• 제목/요약/키워드: Model Inference

검색결과 1,180건 처리시간 0.027초

AUC 차이를 이용한 미결정자 추론방법 (Undecided inference using the difference of AUCs)

  • 홍종선;나해린
    • 응용통계연구
    • /
    • 제34권2호
    • /
    • pp.141-152
    • /
    • 2021
  • 미결정자 추론을 재평가하기 위해 기존 변수에 새로운 변수들을 추가하는 통계 모형이 필요하다. 미결정자와 결정자의 양성률은 다르게 계산되기 때문에 MNAR 가정이 필요하다. 본 연구에서는 두 통계적 모형이 계층 관계를 가지고 있으므로, 두 AUC 차이의 신뢰구간을 이용하여 MNAR 가정하에서 미결정자를 추론한다. AUC 차이 신뢰구간의 추정방법 중에서 모의실험을 통하여 네 종류의 방법의 성능이 우수함을 발견하였다. 그리고 네 종류의 방법을 바탕으로 로지스틱 회귀를 이용한 미결정자 추론에 도움이 되는 변수를 선택하는 방법을 제안한다.

온톨로지 기반의 연구자 모델링 기법과 연구자 네트워크 구축 기법 (A Researcher Model based on Ontology and a Social Network Construction Technique)

  • 문현정;전인하;우용태
    • 한국멀티미디어학회논문지
    • /
    • 제12권7호
    • /
    • pp.1022-1031
    • /
    • 2009
  • 본 논문에서는 온톨로지 기반의 연구자 모델링 기법을 제안하고, 이를 이용하여 연구자간의 다양한 연결 속성을 이용한 연구자 네트워크를 구성한다. 연구자 모델링을 위한 온톨로지 스키마는 HR-XML을 기반으로 연구자 중심의 모델로 확장하여 생성하고 연구자 온톨로지 스키마와 인스턴스는 OWL를 이용하여 생성한다. 연구자 네트워크는 학연과 같은 정적인 연결속성과 공통 논문, 프로젝트와 같은 동적인 연결속성별로 가중치를 부여하여 연구자간 친밀도를 표현한다. 친밀도는 연구자별로 연구자 네트워크가 다르므로 방향성을 가진다. SWRL를 이용하여 연구자간의 직접 관계를 추론하기 위한 규칙을 정의하고, racer 추론기를 이용하여 온톨로지 규칙을 추론한다. 본 연구에서 제안한 모델은 연구자간의 협업 모델이나 공동 프로젝트 수행을 위한 전문가 집단을 동적으로 검색하는데 응용할 수 있다.

  • PDF

베이지안 로지스틱 회귀모형에서의 추론에 대한 연구 (Inferential Problems in Bayesian Logistic Regression Models)

  • 황진수;강성찬
    • 응용통계연구
    • /
    • 제24권6호
    • /
    • pp.1149-1160
    • /
    • 2011
  • 기존의 frequentist 추론에 비해 Bayesian 추론에서의 가설 검정 및 모형 선택 문제는 학자들 간에 일치된 견해를 보이지 못하고 있으며 아직도 논란이 되는 것들이 많다. Bayesian 추론에서 가설 검정 및 모형 선택의 기준으로 널리 쓰이는 Bayes factor는 이해하기 쉬우나 여러 경우에 구하기 어려운 단점이 존재한다. 그 외에 다른 기준으로 Spiegelhalter 등 (2002)가 제시한 DIC(Deviance Information Criterion)과 frequentist 추론에서의 P-value에 대비되는 Bayesian P-value가 있다. 본 논문에서는 Swiss banknote 자료를 Bayesian 로지스틱 회귀모형으로 분석하고 관련 기준들을 구하여 각 기준들이 일관성 있는 결론을 보이는지 확인하고자 한다.

ANFIS 기반 분류모형의 설계 및 성능평가 (Design and Evaluation of ANFIS-based Classification Model)

  • 송희석;김재경
    • 지능정보연구
    • /
    • 제15권3호
    • /
    • pp.151-165
    • /
    • 2009
  • 퍼지신경망 모형은 인공신경망의 네트워크 구조 표현방법 및 학습알고리듬과 퍼지시스템의 추론방법을 통합한 모형으로 제어 및 예측분야에 성공적으로 적용되고 있다. 본 연구에서는 퍼지신경망 모형 중 우수한 예측정확도로 인해 최근 각광받고 있는ANFIS (Adaptive Network-based Fuzzy Inference System)모형을 기반으로 하는 분류모형을 설계하고 기존의 분류기법(C5.0 의사결정나무)과 비교하여 분류 정확성 관점에서 평가한다. ANFIS 추론의 경우, 최종 결과값이 계급값이 아닌 연속형 변수값을 취하게 되므로 산출된 결과값을 이용하여 적절한 계급값을 할당하는 과정이 필요하다. 본 연구에서는 의사결정나무기법을 이용하여 계급값을 할당하는 방식과 군집분석을 이용하여 계급값을 할당하는 두 가지 방식을 제안하고 두 가지 데이터 세트에 적용하여 ANFIS를 기반으로 한 분류모형의 정확도를 평가하였다.

  • PDF

mGA의 혼합된 구조를 사용한 퍼지 모델 동정 (Fuzzy Model Identification using a mGA Hybrid Schemes)

  • 주영훈;이연우;박진배
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권8호
    • /
    • pp.423-431
    • /
    • 2000
  • This paper presents a systematic approach to the input-output data-based fuzzy modeling for the complex and uncertain nonlinear systems, in which the conventional mathematical models may fail to give the satisfying results. To do this, we propose a new method that can yield a successful fuzzy model using a mGA hybrid schemes with a fine-tuning method. We also propose a new coding method fo chromosome for applying the mGA to the structure and parameter identifications of fuzzy model simultaneously. During mGA search, multi-purpose fitness function with a penalty process is proposed and adapted to guarantee the accurate and valid fuzzy modes. This coding scheme can effectively represent the zero-order Takagi-Sugeno fuzzy model. The proposed mGA hybrid schemes can coarsely optimize the structure and the parameters of the fuzzy inference system, and then fine tune the identified fuzzy model by using the gradient descent method. In order to demonstrate the superiority and efficiency of the proposed scheme, we finally show its applications to two nonlinear systems.

  • PDF

Probabilistic-based assessment of composite steel-concrete structures through an innovative framework

  • Matos, Jose C.;Valente, Isabel B.;Cruz, Paulo J.S.;Moreira, Vicente N.
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1345-1368
    • /
    • 2016
  • This paper presents the probabilistic-based assessment of composite steel-concrete structures through an innovative framework. This framework combines model identification and reliability assessment procedures. The paper starts by describing current structural assessment algorithms and the most relevant uncertainty sources. The developed model identification algorithm is then presented. During this procedure, the model parameters are automatically adjusted, so that the numerical results best fit the experimental data. Modelling and measurement errors are respectively incorporated in this algorithm. The reliability assessment procedure aims to assess the structure performance, considering randomness in model parameters. Since monitoring and characterization tests are common measures to control and acquire information about those parameters, a Bayesian inference procedure is incorporated to update the reliability assessment. The framework is then tested with a set of composite steel-concrete beams, which behavior is complex. The experimental tests, as well as the developed numerical model and the obtained results from the proposed framework, are respectively present.

Application of ANFIS to the design of elliptical CFST columns

  • Ngoc-Long Tran;Trong-Cuong Vo;Duy-Duan Nguyen;Van-Quang Nguyen;Huy-Khanh Dang;Viet-Linh Tran
    • Advances in Computational Design
    • /
    • 제8권2호
    • /
    • pp.147-177
    • /
    • 2023
  • Elliptical concrete-filled steel tubular (CFST) column is widely used in modern structures for both aesthetical appeal and structural performance benefits. The ultimate axial load is a critical factor for designing the elliptical CFST short columns. However, there are complications of geometric and material interactions, which make a difficulty in determining a simple model for predicting the ultimate axial load of elliptical CFST short columns. This study aims to propose an efficient adaptive neuro-fuzzy inference system (ANFIS) model for predicting the ultimate axial load of elliptical CFST short columns. In the proposed method, the ANFIS model is used to establish a relationship between the ultimate axial load and geometric and material properties of elliptical CFST short columns. Accordingly, a total of 188 experimental and simulation datasets of elliptical CFST short columns are used to develop the ANFIS models. The performance of the proposed ANFIS model is compared with that of existing design formulas. The results show that the proposed ANFIS model is more accurate than existing empirical and theoretical formulas. Finally, an explicit formula and a Graphical User Interface (GUI) tool are developed to apply the proposed ANFIS model for practical use.

협력적 여과 시스템에서 귀납 추리를 이용한 순위 결정 (Ranking by Inductive Inference in Collaborative Filtering Systems)

  • 고수정
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권9호
    • /
    • pp.659-668
    • /
    • 2010
  • 협력적 여과 시스템은 새로운 사용자의 행위를 파악하고 사용자가 흥미로워할 아이템을 추천해주기 위해서 사용자들에 대한 새로운 정보를 필요로 한다. 이러한 정보를 획득하기 위하여 협력적 여과 시스템은 기존 데이터를 기반으로 학습을 하고, 그 결과에 따라 사용자에 대한 새로운 정보를 찾아낼 수 있다. 본 논문에서는 사용자에 대한 새로운 정보를 획득하기 위한 방법으로 귀납적 추리 방법을 제안하고, 추리된 사용자의 정보를 이용하여 아이템의 순위를 결정한다. 제안된 방법에서는 귀납적 기계 학습 방법인 NMF를 이용하여 사용자를 학습시켜서 모든 사용자들을 그룹으로 군집시키고, 각 그룹으로부터 카이제곱을 이용하여 그룹의 특징을 추출한다. 다음으로, 귀납 추리 방법의 하나인 베이지언 확률모델을 이용하여 새로운 사용자가 입력한 평가값과 각 그룹의 특징을 기반으로 사용자를 적합한 그룹으로 분류한다. 마지막으로, 사용자가 결측한 아이템을 대상으로 로치오(Rocchio) 알고리즘을 적용하여 아이템의 순위를 결정한다.

보행자 기반의 변분 베이지안 감시 카메라 자가 보정 (Pedestrian-Based Variational Bayesian Self-Calibration of Surveillance Cameras)

  • 임종빈
    • 한국정보통신학회논문지
    • /
    • 제23권9호
    • /
    • pp.1060-1069
    • /
    • 2019
  • 보행자 기반의 카메라 자가 보정 방법들은 복잡한 보정 장치나 절차가 필요하지 않기 때문에 비디오 감시 시스템에 적합하다. 하지만 임의 보행자를 보정 대상으로 사용하는 경우 보행자들의 키를 모르기 때문에 보정 정확도가 저하될 수 있다. 본 논문은 실제 감시 환경에서 이 문제를 해결하기 위한 베이지안 보정 방법을 제안한다. 제안하는 방법에서는 감시 지역 사람들의 키에 대한 통계가 있다고 가정하고, 발-머리 호몰로지(foot-head homology)를 사용하여, 발과 머리의 좌표와 보행자 키의 불확실성을 모두 고려하는 확률 모델을 구성한다. 이 확률 모델을 직접 푸는 것은 난해하므로, 본 연구에서는 근사적 방법인 변분 베이지안 추론(variational Bayesian inference)을 사용한다. 따라서, 이를 통해 관측된 보행자들의 키를 추정함과 동시에 정확한 카메라 파라미터를 구할 수 있다. 다양한 실험을 통해 제안된 방법이 노이즈에 강하며, 보정에 대한 정확한 신뢰도를 제공함을 보였다.

환경피로균열 열화특성 예측을 위한 확률론적 접근 (Probabilistic Approach for Predicting Degradation Characteristics of Corrosion Fatigue Crack)

  • 이태현;윤재영;류경하;박종원
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제18권3호
    • /
    • pp.271-279
    • /
    • 2018
  • Purpose: Probabilistic safety analysis was performed to enhance the safety and reliability of nuclear power plants because traditional deterministic approach has limitations in predicting the risk of failure by crack growth. The study introduces a probabilistic approach to establish a basis for probabilistic safety assessment of passive components. Methods: For probabilistic modeling of fatigue crack growth rate (FCGR), various FCGR tests were performed either under constant load amplitude or constant ${\Delta}K$ conditions by using heat treated X-750 at low temperature with adequate cathodic polarization. Bayesian inference was employed to update uncertainties of the FCGR model using additional information obtained from constant ${\Delta}K$ tests. Results: Four steps of Bayesian parameter updating were performed using constant ${\Delta}K$ test results. The standard deviation of the final posterior distribution was decreased by a factor of 10 comparing with that of the prior distribution. Conclusion: The method for developing a probabilistic crack growth model has been designed and demonstrated, in the paper. Alloy X-750 has been used for corrosion fatigue crack growth experiments and modeling. The uncertainties of parameters in the FCGR model were successfully reduced using the Bayesian inference whenever the updating was performed.