• Title/Summary/Keyword: Model Helicopter

Search Result 269, Processing Time 0.028 seconds

Transient Response Analysis for a Smart UAV Considering Dynamic Loads by Rotating Rotor and Wakes (회전로터 및 후류 동하중을 고려한 스마트 무인기 천이응답해석)

  • Kim, Hyun-Jung;Oh, Se-Won;Kim, Sung-Jun;Choi, Ik-Hyeon;Kim, Tae-Wook;Lee, Sang-Uk;Kim, Jin-Won;Lee, Jung-Jin;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.926-936
    • /
    • 2006
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic loads generated by rotating rotor and wakes. The present UAV (TR-S5-03) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis (MTRA) is established using general purpose finite element method (FEM) and computational fluid dynamics (CFD) technique. The dynamic loads generated by rotating blades in the transient and forward flight conditions are calculated by unsteady CFD technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations are presented in detail. In addition, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.

Radiation study of a Wire Antenna Mounted on the Complex Structure Using the FDTD Method (FDTD 기법을 이용한 복잡한 구조물 위에 부착된 안테나의 방사특성 해석)

  • Kim, Byoung-Nam;Park, Seong-Ook
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.12
    • /
    • pp.1-10
    • /
    • 1999
  • In this paper, we analyzed the radiation patterns of a monopole antenna mounted on the complex structures by using FDTD method associated with 3-D PML absorbing boundary condition. In order to validate the proposed FDTD code, the radiation patterns of monopole antenna mounted on cylinders and spheres were compared with the exact solutions of $Carter^{[1]}$ and $Harrington^{[2]}$. For all case considered, the predicted radiation pattern exhibited excellent agreement with exact solution. To be able to model the more complex structures, the proposed FDTD methods are combined with BRL-CAD. And this procedures is applied to predict the radiation patterns of a wire antenna attached to the top of a Blackhawk helicopter.

  • PDF

Wind Tunnel Wall Interference Correction Method for Helicopter Rotor Tests with Closed and open Test Sections (헬리콥터 로터의 폐쇄형 및 개방형 풍동시험 벽면효과 보정기법 연구)

  • Lee, Hyeon-Jung;Jang, Jong-Youn;Lee, Seung-Soo;Kim, Beom-Soo;Song, Keun-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.621-627
    • /
    • 2008
  • Aerodynamic data measured in a wind tunnel has inevitable errors due to the presence of the wind tunnel walls. These unwanted interference effects must be corrected for the wall interference free aerodynamic data. Streamline curvature effects are caused by straightening of streamlines due to wind tunnel walls. Classical Glauert's correction method that is a standard method for fixed wing aircraft is not suitable for rotary wing aircraft. In this paper, Heyson's correction method of which wake model is compatible with rotors is used to correct the rotor shaft angle as well as the dynamic pressure. The results of Heyson's method are compared with Glauert's correction method.

A Study on the Far-Field Boundary Condition of Tightly Coupled CFD/FreeWake Method in Hover (로터 제자리비행에 적용된 CFD/FreeWake 연계방법의 원거리 경계조건에 대한 연구)

  • Wie, Seong-Yong;Lee, Jae-Hun;Kwon, Jang-Hyuk;Lee, Duck-Joo;Chung, Ki-Hoon;Kim, Seung-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.957-963
    • /
    • 2007
  • this study, helicopter rotor flow is simulated by using a tightly coupled CFD/FreeWake method to describe wake characteristics and to calculate the flow field and rotor aerodynamics. In this tightly coupled CFD/FreeWake method, freewake model provides the boundary condition required in the CFD calculation and CFD provides the pressure distribution on blade surface used in feewake generation. To show the advantage of this method, the pressure distributions on blade surface of a hovering 2-bladed rotor are compared with other numerical methods. This tightly coupled CFD/FreeWake method shows good accuracy in the predicted results and efficient computation time.

Policy for planned placement of sensor nodes in large scale wireless sensor network

  • Sharma, Vikrant;Patel, R.B;Bhadauria, HS;Prasad, D
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3213-3230
    • /
    • 2016
  • Sensor node (SN) is a crucial part in any remote monitoring system. It is a device designed to monitor the particular changes taking place in its environs. Wireless sensor network (WSN) is a system formed by the set of wirelessly connected SNs placed at different geographical locations within a target region. Precise placement of SNs is appreciated, as it affects the efficiency and effectiveness of any WSN. The manual placement of SNs is only feasible for small scale regions. The task of SN placement becomes tedious, when the size of a target region is extremely large and manually unreachable. In this research article, an automated mechanism for fast and precise deployment of SNs in a large scale target region has been proposed. It uses an assembly of rotating cannons to launch the SNs from a moving carrier helicopter. The entire system is synchronized such that the launched SNs accurately land on the pre-computed desired locations (DLs). Simulation results show that the proposed model offers a simple, time efficient and effective technique to place SNs in a large scale target region.

Transient Response Analysis for a Smart UAV Considering Dynamic Loads by Rotating Rotor and Wakes (회전로터 및 후류 동하중을 고려한 스마트 무인기 천이응답해석)

  • Kim, Hyun-Jung;Kim, Dong-Hyun;Oh, Se-Won;Kim, Sung-Jun;Choi, Ik-Hyeon;Kim, Tae-Wook;Lee, Sang-Uk;Kim, Jin-Won;Lee, Jung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.367-375
    • /
    • 2006
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic loads generated by rotating rotor and wakes. The present UAV (TR-S5-03) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis (MTRA) is established. using general purpose finite element method (FEM) and computational fluid dynamics (CFD) technique. The dynamic loads generated by rotating blades in the transient and forward flight conditions are calculated by unsteady CFD technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations are presented in detail. In addition, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.

  • PDF

3-블레이드 회전익 항공기에서 기하학적 정밀 보의 공탄성 모델을 이용한 무베어링 로터의 자이로스코픽 세차 진동 제어

  • Im, Byeong-Uk;Kim, Yong-Se;Sin, Sang-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.270-281
    • /
    • 2017
  • In this paper, a vibratory disturbance to the rotor system generated by gyroscopic precession through helicopter rotor is examined. Also, active vibration reduction method is designed and simulated by designing feedback controller. For this purpose, structural analysis is carried out using EDISON's geometric exact beam program which can analyze the rotor with the cantilever condition. And the aeroelastic analysis is performed by coupling it with the simple aerodynamic model. In order to obtain the real-time structural response, the EDISON program analysis results were modeled by nonlinear equations and the Newton-Raphson method was used for the trim analysis.

  • PDF

Estimation of the Potato Growth Information Using Multi-Spectral Image Sensor (멀티 스펙트럴 이미지 센서를 이용한 감자의 생육정보 예측)

  • Kang, Tae-Hwann;Noguchi, Noboru
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.180-186
    • /
    • 2011
  • The objective of this research was to establish the estimation method of growth information on potato using Multi-Spectral Image Sensor (MSIS) and Global Positioning System (GPS). And growth estimation map for determining a prescription map over the entire field was generated. To determine the growth model, 10 ground-truth points of areas of $4m^2$ each were selected and investigated. The growth information included stem number, crop height and SPAD value. In addition, images information involving the ground-truth points were also taken by an unmanned helicopter, and reflectance value of Green, Red, and NIR bands were calculated with image processing. Then, growth status of potato was modeled by multi-regression analysis using these reflectance value of Green, Red, and NIR. As a result, potato growth information could be detected by analyzing Green, Red, and NIR images. Stem number, crop height and SPAD value could be estimated with $R^2$ values of 0.600, 0.657 and 0.747 respectively. The generated GIS map would describe variability of the potato growth in a whole field.

Parametric Study for the Low BVI Noise Rotor Blade Design

  • Hwang, Chang-Jeon;Joo, Gene
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.88-98
    • /
    • 2003
  • Compared to the noise limits (CAN7) specified in ICAO Annex 16 for civil helicopters, the Lynx helicopter equipped with BERP blades has only 0.2 EPNdB margin in the approach case although it has more than 4 EPNdB margin in fly-over and take-off conditions. The objectives of the study described in this paper were to devise a low noise main rotor blade for the Lynx using UEAF combined with the high resolution airload model ACROT. A design requirement is that the new blade, KBERP (Korean BERP) blade should achieve a significant reduction in noise during approach(at least 6EPNdB margin) without any noise penalty in fly-over and take-off conditions and minimal performance penalty. It was decided to investigate a tip modification to the BERP blade, employing the twin vortex concept to reduce the BVI noise and to retain the excellent high speed performance characteristics of BERP. Through the parametric study, the KBERP blade with optimized twin vortices has at least a 9 EPNdB noise margin in approach flight condition with only a small penalty in fly-over and take-off conditions. The KBERP tip is thus a very cost effective wav to reduce BVI noise during approach.

Experimental Investigations of Accuracy Improvement in Wind Tunnel Testing Using Design of Experiments (실험설계법 기반 풍동실험 정밀도 향상 실험연구)

  • Oh, Se-Yoon;Park, Seung-O;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.291-297
    • /
    • 2014
  • A Design of Experiments(DOE) approach to an experimental study of fuselage drag and stability characteristics of a helicopter configuration was applied to achieve an accuracy improvement in the wind tunnel testing. The impact of blocking the test was assessed by comparing the ANOVA table for the blocked and unblocked cases. For a second-order response model, the role of blocking resulted in a substantial increase in the accuracy of test results. These accuracy improvement could be achieved through randomization, blocking, and replication of the data points i.e. a re-ordering of the test sequence where the data were acquired.