• Title/Summary/Keyword: Model Following Control

Search Result 927, Processing Time 0.028 seconds

An Application of Variable Structure Model Following Adaptive Control Using Time-Varying Sliding Regime to Robot Manipulator with Vertical 3 links (수직3관절 로보트 매니풀레이터에 대하여 시변슬라이딩레짐을 사용한 가변구조 모델추종 적응제어의 응용)

  • Kim, Joong-Wan;Kang, Dae-Gi;Kim, Byoung-Oh;Oh, Hyun-Seong;Jung, Hee-Kyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.158-167
    • /
    • 1994
  • The design concept of varaiable structure control is useful not only to stochasic systems but also to adaptive control systems. The Dynamic equation of vertical three linkage robot was derived. And it was simplyfied according to the scheme of control strategy. And we specify the form of model. Thereafter the error dynamic equation was derived between the real state of the plant and state of the model. Some simulations were performed to control robot manipulator applying the methodology of the variable structure model following adaptive control.

  • PDF

Trajectory Following Control Using Cogging Force Model in Linear Positioning System

  • Chung, Myung-Jin;Gweon, Dae-Gab
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.62-68
    • /
    • 2002
  • To satisfy the requirement of the one axis linear positioning system, which is following control of the desired trajectory without following error and is the high positioning accuracy, feed-forward loop having cogging force model is proposed. In the one axis linear positioning system with linear PM motor, cogging force acting as disturbance is modeled analytically. Analytic model of cogging force is verified by result measured from positioning system constructed with linear PM motor. Measured result is very similar with proposed analytic model. Cogging force model is used as feet forward loop in control scheme of linear positioning system. Cogging force feed-forward'loop is obtained from analytic model of cogging farce. Trajectory following error is reduced from 300nm to 100nm by applying the proposed cogging farce feed-forward loop. By using analytic model of cogging force, the control scheme is simplified. Also this analytic model is applicable to calculation of characteristic value of positioning system in design process.

PID Control Structure for Model Following Control (모델 추종 제어를 위한 PID 제어기법)

  • 이창호;김종진;하홍곤
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.2
    • /
    • pp.138-142
    • /
    • 2004
  • This paper proposes the design of the model following control system using the PID control structure. PID control system became model following control by inserting new pre-compensator in order to improve control performance in discrete-time region. Gain of the PID controller needs to be readjusted when response of system changes due to disturbance or load fluctuation. Performance of control system improves by joining neural network to PID control system because performance of control system depends largely on each PID gain in PID control system. And the games of the PID controller in the proposed control system are automatically adjusted by back-propagation algorithm of the neural network. Angular position of DC servo motor is selected as a plant in order to verify control performance in model following control. After it is applied to the position control system, it's performance is verified through computer experiment.

  • PDF

Vibration suppression of flexible structures using optimal model following control scheme (최적 모델추종 제어기법을 이용한 유연 구조물 진동 억제에 관한 연구)

  • 양철호;김유단
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.931-936
    • /
    • 1993
  • Optimal model following control scheme is to design the controller which makes the response of real system follow that of desirable model. This kind of design scheme is developed for first order system. We extends the scheme for second order system regarding the characteristics of mechanical second order system for vibration suppression of flexible structures. The model of mechanical second order system is obtained using suitable damping ratios and natural frequencies. Using this scheme, we can design the good controller which uses the characteristic of second order system. Numerical examples are presented which were used optimal model following control scheme.

  • PDF

A Selection of Optimal Weighting matrix for Model Following Multivariable Control System to Boiler-Turbine Equipment Using GA (GA를 이용한 보일러-터빈 설비의 모델 추종형 다변수 제어 시스템 설계를 위한 취적 가중치 행렬의 선정)

  • ;黃現俊
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.234-234
    • /
    • 1999
  • The aim of this paper is to suggest a design method of the optimal model following control system using genetic algorithm (GA). This control system is designed by applying GA with reference model to the optimal determination of weighting matrices Q, R that are given by LQ regulator problem. The method to do this is that all the diagonal elements of weighting matrices are optimized simultaneously by GA, in the search domain selected adequately. And we design the model following control system to boi1er-turbine equipment by the proposed method. The model following control system designed by this method has the better command tracking performance than that of the control system designed by the trial-and-error method. The effectiveness of this control system is verified by computer simulation.

Robust Tracking Control Based on Intelligent Sliding-Mode Model-Following Position Controllers for PMSM Servo Drives

  • El-Sousy Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.159-173
    • /
    • 2007
  • In this paper, an intelligent sliding-mode position controller (ISMC) for achieving favorable decoupling control and high precision position tracking performance of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The intelligent position controller consists of a sliding-mode position controller (SMC) in the position feed-back loop in addition to an on-line trained fuzzy-neural-network model-following controller (FNNMFC) in the feedforward loop. The intelligent position controller combines the merits of the SMC with robust characteristics and the FNNMFC with on-line learning ability for periodic command tracking of a PMSM servo drive. The theoretical analyses of the sliding-mode position controller are described with a second order switching surface (PID) which is insensitive to parameter uncertainties and external load disturbances. To realize high dynamic performance in disturbance rejection and tracking characteristics, an on-line trained FNNMFC is proposed. The connective weights and membership functions of the FNNMFC are trained on-line according to the model-following error between the outputs of the reference model and the PMSM servo drive system. The FNNMFC generates an adaptive control signal which is added to the SMC output to attain robust model-following characteristics under different operating conditions regardless of parameter uncertainties and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode position controller. The results confirm that the proposed ISMC grants robust performance and precise response to the reference model regardless of load disturbances and PMSM parameter uncertainties.

A study on the robust model-following control system (Robust 모델추종 제어계통에 관한 연구)

  • 천희영;박귀태;이종렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.373-376
    • /
    • 1986
  • This paper proposes a robust model following control system which realizes good properties such as asymptotic stability, disturbance rejection and model following with reduced sensitivity for plant parameter variation. This algorithm can be easily applied to the multivariable control systems and the control structure is simple. As an example the aircraft control system of a convair C-131B is designed and its characteristics are examined by simulation.

  • PDF

The model following control systems for descriptor system

  • Tang, Houjun;Okubo, Shigenori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.372-375
    • /
    • 1996
  • In this paper, a designing method of model following control system for linear descriptor system with disturbances is proposed. The features of this method are:1) both the physical structure of the system and the physical system variables properties can be preserved because there is no necessary to make transformation of this system. 2) boundedness of internal states are proved by means of coprime factorization of descriptor system.

  • PDF

Guidance and Control Algorithm for Waypoint Following of Tilt-Rotor Airplane in Helicopter Flight Mode (틸트로터 항공기의 경로점 추종 비행유도제어 알고리즘 설계 : 헬리콥터 비행모드)

  • Ha, Cheol-Keun;Yun, Han-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.207-213
    • /
    • 2005
  • This paper deals with an autonomous flight guidance and control algorithm design for TR301 tilt-rotor airplane under development by Korea Aerospace Research Institute for simulation purpose. The objective of this study is to design autonomous flight algorithm in which the tilt-rotor airplane should follow the given waypoints precisely. The approach to this objective in this study is that, first of all, model-based inversion is applied to the highly nonlinear tilt-rotor dynamics, where the tilt-rotor airplane is assumed to fly at helicopter flight mode(nacelle angle=0 deg), and then the control algorithm, based on classical control, is designed to satisfy overall system stabilization and precise waypoint following performance. Especially, model uncertainties due to the tiltrotor model itself and inversion process are adaptively compensated in a simple neural network(Sigma-Phi NN) for performance robustness. The designed algorithm is evaluated in the tilt-rotor nonlinear airplane in helicopter flight mode to analyze the following performance for given waypoints. The simulation results show that the waypoint following responses for this algorithm are satisfactory, and control input responses are within control limits without saturation.

The Handling Characteristics of The Independent Rear Wheel Steering Vehicle Using the Reference Model Following Control (기준모델 추종제어를 이용한 독립 후륜조향 차량의 조향 특성해석)

  • 봉우종;이상호;이언구;한창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.130-140
    • /
    • 2000
  • In this paper the reference model following control(RMFC) scheme through the optimal control theory is investigated for the independent rear wheel steering(IRWS) vehicle. RMFC vehicle follows the dynamic performance of a virtual vehicle as a reference model deisgned in the controller. Linear vehicle model of two degres-of-freedom is used to derive control scheme which is applied to full vehicle for evaluating handling performances. And 4WS vehicle through RMFC is compared to the conventional 2WS vehicle and 4WS vehicle in the J-turn test. The RMFC logic is also extended to IRWS vehicle, IRWS with RMFC shows not only the excellent handling performance but salso some advantages in terms of the directional stability and responsiveness from the simulation results.

  • PDF