• 제목/요약/키워드: Model Feature Map

Search Result 165, Processing Time 0.024 seconds

Comparison of Flood Inundation Models using Topographic Feature (지형요소를 이용한 홍수범람해석 모형의 비교)

  • Moon, Changgeon;Lee, Jungsik;Cho, Sunggeun;Shin, Shachul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.69-77
    • /
    • 2014
  • The objective of this study is to compare flood inundation models for small stream basin. HEC-RAS model was used for the analysis of one dimensional hydraulics and HEC-GeoRAS, Ras Mapper and RiverCAD models were applied for the flood inundation analysis in Gum Chung stream. Flood inundations are to simulate by flood inundation models using observed data and rainfall on each frequency and to compare with inundation area based on the flood plain maps. The results of this study are as follows; Area of flood inundations by HEC-GeoRAS model is similar to that of flood plain map and appears in order of RAS Mapper and RiverCAD model. Flood inundation area by RiverCAD model is to estimate lager than that of RAS Mapper and HEC-GeoRAS model in flood area on each frequency and the results show that they have a little difference in models of flood inundation analysis at small stream. Comparing the area of flood inundations by flood depth, the results of three models are relatively similar in flood depth as 2.0 m below, and RiverCAD model shows a significant difference in flood depth as 2.0 m or more.

Geospatial Data Modeling for 3D Digital Mapping (3차원 수치지도 생성을 위한 지형공간 데이터 모델링)

  • Lee, Dong-Cheon;Bae, Kyoung-Ho;Ryu, Keun-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.3
    • /
    • pp.393-400
    • /
    • 2009
  • Recently demand for the 3D modeling technology to reconstruct real world is getting increasing. However, existing geospatial data are mainly based on the 2D space. In addition, most of the geospatial data provide geometric information only. In consequence, there are limits in various applications to utilize information from those data and to reconstruct the real world in 3D space. Therefore, it is required to develop efficient 3D mapping methodology and data for- mat to establish geospatial database. Especially digital elevation model(DEM) is one of the essential geospatial data, however, DEM provides only spatially distributed 3D coordinates of the natural and artificial surfaces. Moreover, most of DEMs are generated without considering terrain properties such as surface roughness, terrain type, spatial resolution, feature and so on. This paper suggests adaptive and flexible geospatial data format that has possibility to include various information such as terrain characteristics, multiple resolutions, interpolation methods, break line information, model keypoints, and other physical property. The study area was categorized into mountainous area, gently rolling area, and flat area by taking the terrain characteristics into account with respect to terrain roughness. Different resolutions and interpolation methods were applied to each area. Finally, a 3D digital map derived from aerial photographs was integrated with the geospatial data and visualized.

Driver Assistance System for Integration Interpretation of Driver's Gaze and Selective Attention Model (운전자 시선 및 선택적 주의 집중 모델 통합 해석을 통한 운전자 보조 시스템)

  • Kim, Jihun;Jo, Hyunrae;Jang, Giljin;Lee, Minho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.115-122
    • /
    • 2016
  • This paper proposes a system to detect driver's cognitive state by internal and external information of vehicle. The proposed system can measure driver's eye gaze. This is done by concept of information delivery and mutual information measure. For this study, we set up two web-cameras at vehicles to obtain visual information of the driver and front of the vehicle. We propose Gestalt principle based selective attention model to define information quantity of road scene. The saliency map based on gestalt principle is prominently represented by stimulus such as traffic signals. The proposed system assumes driver's cognitive resource allocation on the front scene by gaze analysis and head pose direction information. Then we use several feature algorithms for detecting driver's characteristics in real time. Modified census transform (MCT) based Adaboost is used to detect driver's face and its component whereas POSIT algorithms are used for eye detection and 3D head pose estimation. Experimental results show that the proposed system works well in real environment and confirm its usability.

A prediction and distribution of Moors Applying to Environment Assesment Based on E-GIS (환경지리정보 기반의 환경평가 적용시 습지분포 및 규모예측)

  • Kwak, Young-Joo;Park, Sang-Yong;Kang, In-Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.3 s.33
    • /
    • pp.53-57
    • /
    • 2005
  • The moors ecosystem is sensitive environment change and weak in artificial interference. These nature property are very important to people. It is necessary to preservation and protection the moors with a countermeasure. We really need to Environment-GIS(E-GIS) using Geographical Information System(GIS) and digital map including range, correct position and attribute data of moors. In this study, we take priority of making a database of moors management. Taking effect an environment assesment, we concentrate on a standard method of digital map production and a preservation of moors in our research using GIS. Especially, we have to preserve our important national heritage using GIS when Environment Assesment is conducting under construction. We suggest to pre-estimated model of hidden moors as analysing terrain, geological feature, a geographical distribution of plants and animals using GIS.

  • PDF

Accuracy Estimation of Electro-optical Camera (EOC) on KOMPSAT-1

  • Park, Woon-Yong;Hong, Sun-Houn;Song, Youn-Kyung
    • Korean Journal of Geomatics
    • /
    • v.2 no.1
    • /
    • pp.47-55
    • /
    • 2002
  • Remote sensing is the science and art of obtaining information about an object, area or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation./sup 1)/ EOC (Electro -Optical Camera) sensor loaded on the KOMPSAT-1 (Korea Multi- Purpose Satellite-1) performs the earth remote sensing operation. EOC can get high-resolution images of ground distance 6.6m during photographing; it is possible to get a tilt image by tilting satellite body up to 45 degrees at maximum. Accordingly, the device developed in this study enables to obtain images by photographing one pair of tilt image for the same point from two different planes. KOMPSAT-1 aims to obtain a Korean map with a scale of 1:25,000 with high resolution. The KOMPSAT-1 developed automated feature extraction system based on stereo satellite image. It overcomes the limitations of sensor and difficulties associated with preprocessing quite effectively. In case of using 6, 7 and 9 ground control points, which are evenly spread in image, with 95% of reliability for horizontal and vertical position, 3-dimensional positioning was available with accuracy of 6.0752m and 9.8274m. Therefore, less than l0m of design accuracy in KOMPSAT-1 was achieved. Also the ground position error of ortho-image, with reliability of 95%, is 17.568m. And elevation error showing 36.82m was enhanced. The reason why elevation accuracy was not good compared with the positioning accuracy used stereo image was analyzed as a problem of image matching system. Ortho-image system is advantageous if accurate altitude and production of digital elevation model are desired. The Korean map drawn on a scale of 1: 25,000 by using the new technique of KOMPSAT-1 EOC image adopted in the present study produces accurate result compared to existing mapping techniques involving high costs with less efficiency.

  • PDF

Accuracy Assessment of Feature Collection Method with Unmanned Aerial Vehicle Images Using Stereo Plotting Program StereoCAD (수치도화 프로그램 StereoCAD를 이용한 무인 항공영상의 묘사 정확도 평가)

  • Lee, Jae One;Kim, Doo Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.257-264
    • /
    • 2020
  • Vectorization is currently the main method in feature collection (extraction) during digital mapping using UAV-Photogrammetry. However, this method is time consuming and prone to gross elevation errors when extracted from a DSM (Digital Surface Model), because three-dimensional feature coordinates are vectorized separately: plane information from an orthophoto and height from a DSM. Consequently, the demand for stereo plotting method capable of acquiring three- dimensional spatial information simultaneously is increasing. However, this method requires an expensive equipment, a Digital Photogrammetry Workstation (DPW), and the technology itself is still incomplete. In this paper, we evaluated the accuracy of low-cost stereo plotting system, Menci's StereoCAD, by analyzing its three-dimensional spatial information acquisition. Images were taken with a FC 6310 camera mounted on a Phantom4 pro at a 90 m altitude with a Ground Sample Distance (GSD) of 3 cm. The accuracy analysis was performed by comparing differences in coordinates between the results from the ground survey and the stereo plotting at check points, and also at the corner points by layers. The results showed that the Root Mean Square Error (RMSE) at check points was 0.048 m for horizontal and 0.078 m for vertical coordinates, respectively, and for different layers, it ranged from 0.104 m to 0.127 m for horizontal and 0.086 m to 0.092 m for vertical coordinates, respectively. In conclusion, the results showed 1: 1,000 digital topographic map can be generated using a stereo plotting system with UAV images.

Earthquake events classification using convolutional recurrent neural network (합성곱 순환 신경망 구조를 이용한 지진 이벤트 분류 기법)

  • Ku, Bonhwa;Kim, Gwantae;Jang, Su;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.592-599
    • /
    • 2020
  • This paper proposes a Convolutional Recurrent Neural Net (CRNN) structure that can simultaneously reflect both static and dynamic characteristics of seismic waveforms for various earthquake events classification. Addressing various earthquake events, including not only micro-earthquakes and artificial-earthquakes but also macro-earthquakes, requires both effective feature extraction and a classifier that can discriminate seismic waveform under noisy environment. First, we extract the static characteristics of seismic waveform through an attention-based convolution layer. Then, the extracted feature-map is sequentially injected as input to a multi-input single-output Long Short-Term Memory (LSTM) network structure to extract the dynamic characteristic for various seismic event classifications. Subsequently, we perform earthquake events classification through two fully connected layers and softmax function. Representative experimental results using domestic and foreign earthquake database show that the proposed model provides an effective structure for various earthquake events classification.

Measurement of Dynamic Characteristics on Structure using Non-marker Vision-based Displacement Measurement System (비마커 영상기반 변위계측 시스템을 이용한 구조물의 동특성 측정)

  • Choi, Insub;Kim, JunHee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.301-308
    • /
    • 2016
  • In this study, a novel method referred as non-marker vision-based displacement measuring system(NVDMS) was introduced in order to measure the displacement of structure. There are two distinct differences between proposed NVDMS and existing vision-based displacement measuring system(VDMS). First, the NVDMS extracts the pixel coordinates of the structure using a feature point not a marker. Second, in the NVDMS, the scaling factor in order to convert the coordinates of a feature points from pixel value to physical value can be calculated by using the external conditions between the camera and the structure, which are distance, angle, and focal length, while the scaling factor for VDMS can be calculated by using the geometry of marker. The free vibration test using the three-stories scale model was conducted in order to analyze the reliability of the displacement data obtained from the NVDMS by comparing the reference data obtained from laser displacement sensor(LDS), and the measurement of dynamic characteristics was proceed using the displacement data. The NVDMS can accurately measure the dynamic displacement of the structure without the marker, and the high reliability of the dynamic characteristics obtained from the NVDMS are secured.

Weather Classification and Fog Detection using Hierarchical Image Tree Model and k-mean Segmentation in Single Outdoor Image (싱글 야외 영상에서 계층적 이미지 트리 모델과 k-평균 세분화를 이용한 날씨 분류와 안개 검출)

  • Park, Ki-Hong
    • Journal of Digital Contents Society
    • /
    • v.18 no.8
    • /
    • pp.1635-1640
    • /
    • 2017
  • In this paper, a hierarchical image tree model for weather classification is defined in a single outdoor image, and a weather classification algorithm using image intensity and k-mean segmentation image is proposed. In the first level of the hierarchical image tree model, the indoor and outdoor images are distinguished. Whether the outdoor image is daytime, night, or sunrise/sunset image is judged using the intensity and the k-means segmentation image at the second level. In the last level, if it is classified as daytime image at the second level, it is finally estimated whether it is sunny or foggy image based on edge map and fog rate. Some experiments are conducted so as to verify the weather classification, and as a result, the proposed method shows that weather features are effectively detected in a given image.

Attention Gated FC-DenseNet for Extracting Crop Cultivation Area by Multispectral Satellite Imagery (다중분광밴드 위성영상의 작물재배지역 추출을 위한 Attention Gated FC-DenseNet)

  • Seong, Seon-kyeong;Mo, Jun-sang;Na, Sang-il;Choi, Jae-wan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1061-1070
    • /
    • 2021
  • In this manuscript, we tried to improve the performance of the FC-DenseNet by applying an attention gate for the classification of cropping areas. The attention gate module could facilitate the learning of a deep learning model and improve the performance of the model by injecting of spatial/spectral weights to each feature map. Crop classification was performed in the onion and garlic regions using a proposed deep learning model in which an attention gate was added to the skip connection part of FC-DenseNet. Training data was produced using various PlanetScope satellite imagery, and preprocessing was applied to minimize the problem of imbalanced training dataset. As a result of the crop classification, it was verified that the proposed deep learning model can more effectively classify the onion and garlic regions than existing FC-DenseNet algorithm.