• Title/Summary/Keyword: Model Evaluation

Search Result 13,010, Processing Time 0.052 seconds

An Analysis of Road User Acceptance Factors for Fully Autonomous Vehicles : For Drivers and Pedestrians (완전 자율주행자동차에 대한 도로이용자 수용성 요인 분석 : 운전자 및 보행자를 대상으로)

  • Jeong, Mi-Kyeong;Choi, Mee-Sun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.117-132
    • /
    • 2022
  • The purpose of this study is to analyze factors that affect road users' acceptance of fully autonomous vehicles (level 4 or higher). A survey was done with drivers of general cars and pedestrians who share roads with fully autonomous vehicles. Five acceptability factors were selected: trust towards technology, compatibility, policy, perceived safety, and perceived usefulness. The effect on behavioral intention was analyzed using structural equation modeling (SEM). The perceived safety and trust towards technology were found to be very important in the acceptance of fully autonomous vehicles, regardless of the respondent, and policy was not influential. Compatibility and perceived usefulness were particularly influential factors for drivers. In order to improve the acceptance by road users, securing technical completeness of fully autonomous vehicles is important. Certification and evaluation of the safe driving ability of fully autonomous vehicles should be thoroughly performed, and based on the results, it is necessary to improve the perception by road users. It is necessary to positively recognize fully autonomous vehicles through education and publicity for road users and to support their smooth interaction.

Full-mouth rehabilitation with increasing vertical dimension on the patient with severely worn-out dentition and orthognathic surgery history: A case report (악교정수술 병력을 가진 과도한 치아 마모를 보이는 환자의 수직고경 증가를 동반한 전악 수복 증례)

  • Sang-Myeong Tak;Chang-Mo Jeong;Jung-Bo Huh;So-Hyoun Lee;Mi-Jung Yun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.1
    • /
    • pp.33-43
    • /
    • 2023
  • Pathological wear across the entire dentition causes problems such as collapsed occlusal plane, reduced vertical dimension, anterior premature contact, inadequate anterior guidance, and tooth migration, thereby induce symptoms such as temporomandibular joint disorder, reduced masticatory efficiency, and tooth hypersensitivity. For the treatment of patients with excessive wear, evaluation of vertical dimension should be preceded along with analysis of the cause. The patient in this case was a 45-year-old female with a history of orthognathic surgery. Through clinical examination, radiographic examination, and model analysis, overall tooth wear, interdental spacing in the anterior maxillary region, retruded condylar position, and insufficient interocclusal space for prosthetic restoration were confirmed. Full mouth rehabilitation with increased vertical dimension was planned, the patient's adaptation to the new vertical dimension was evaluated with a removable occlusal splint and temporary prosthesis, and cross-mounting was performed based on the temporary restoration to fabricate the definitive zirconia prosthesis, maintaining the adjusted vertical dimension. It showed satisfactory functional and esthetic results through stable restoration of the occlusal relationship.

A Data-driven Classifier for Motion Detection of Soldiers on the Battlefield using Recurrent Architectures and Hyperparameter Optimization (순환 아키텍쳐 및 하이퍼파라미터 최적화를 이용한 데이터 기반 군사 동작 판별 알고리즘)

  • Joonho Kim;Geonju Chae;Jaemin Park;Kyeong-Won Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.107-119
    • /
    • 2023
  • The technology that recognizes a soldier's motion and movement status has recently attracted large attention as a combination of wearable technology and artificial intelligence, which is expected to upend the paradigm of troop management. The accuracy of state determination should be maintained at a high-end level to make sure of the expected vital functions both in a training situation; an evaluation and solution provision for each individual's motion, and in a combat situation; overall enhancement in managing troops. However, when input data is given as a timer series or sequence, existing feedforward networks would show overt limitations in maximizing classification performance. Since human behavior data (3-axis accelerations and 3-axis angular velocities) handled for military motion recognition requires the process of analyzing its time-dependent characteristics, this study proposes a high-performance data-driven classifier which utilizes the long-short term memory to identify the order dependence of acquired data, learning to classify eight representative military operations (Sitting, Standing, Walking, Running, Ascending, Descending, Low Crawl, and High Crawl). Since the accuracy is highly dependent on a network's learning conditions and variables, manual adjustment may neither be cost-effective nor guarantee optimal results during learning. Therefore, in this study, we optimized hyperparameters using Bayesian optimization for maximized generalization performance. As a result, the final architecture could reduce the error rate by 62.56% compared to the existing network with a similar number of learnable parameters, with the final accuracy of 98.39% for various military operations.

A Study on the Mediating Effect of Motivation Factors between the Quality of Research Data Metadata and the Activation of Research Data Platform (연구데이터 메타데이터의 품질과 연구데이터플랫폼의 활성화의 관계에서 동기부여 요인의 매개효과 연구)

  • Seong-Eun Park
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.57 no.3
    • /
    • pp.325-350
    • /
    • 2023
  • This study focuses on the impact of research data metadata quality evaluation index on the revitalization of K-BDS, a research data platform in the bio field, and examines the mediating effect of motivation factors for utilizing the platform. The investigation employs a structural equation model analysis and bootstrap analysis to explore the interrelationships among the three variables. The findings demonstrate that researchers who prioritize the quality of metadata display higher motivation to use the research data platform, leading to an intention to activate the platform. The study also confirms the mediating effect of motivation factors. Moreover, a comprehensive understanding of the sub-factors within each variable is attained through regression analysis and Sobel test. The results highlight that enhancing searchability is crucial to activate research data sharing in the bio field, while improving discoverability is vital for research data reuse. Interestingly, the study reveals that citationability does not significantly impact platform activation. As a conclusion, to foster platform activation, it is imperative to provide systematic support by enhancing metadata quality. This improvement can not only increase trust in the platform but also institutionally solidify the benefits of citation.

Development and Evaluation of Safe Route Service of Electric Personal Assistive Mobility Devices for the Mobility Impaired People (교통약자를 위한 전동 이동 보조기기 안전 경로 서비스의 개발과 평가)

  • Je-Seung WOO;Sun-Gi HONG;Sang-Kyoung YOO;Hoe Kyoung KIM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.3
    • /
    • pp.85-96
    • /
    • 2023
  • This study developed and evaluated a safe route guidance service for electric personal assistive mobility device used mainly by the mobility impaired people to improve their mobility. Thirteen underlying factors affecting the mobility of electric personal assistive mobility device have been derived through a survey with the mobility impaired people and employees in related organizations in Busan Metropolitan City. After assigning safety scores to individual factors and identifying the relevant factors along routes of interest with an object detection AI model, the safe route for electric personal assistive mobility device was provided through an optimal path-finding algorithm. As a result of comparing the general route of T-map and the recommended route of this study for the identical routes, the latter had relatively fewer obstacles and the gentler slope than the former, implicating that the recommended route is safer than the general one. As future works, it is necessary to enhance the function of a route guidance service based on the real-time location of users and to conduct spot investigations to evaluate and verify its social acceptability.

Soil Depth Estimation and Prediction Model Correction for Mountain Slopes Using a Seismic Survey (탄성파 탐사를 활용한 산지사면 토심 추정 및 예측모델 보정)

  • Taeho Bong;Sangjun Im;Jung Il Seo;Dongyeob Kim;Joon Heo
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.340-351
    • /
    • 2023
  • Landslides are major natural geological hazards that cause enormous property damage and human casualties annually. The vulnerability of mountainous areas to landslides is further exacerbated by the impacts of climate change. Soil depth is a crucial parameter in landslide and debris flow analysis, and plays an important role in the evaluation of watershed hydrological processes that affect slope stability. An accurate method of estimating soil depth is to directly investigate the soil strata in the field. However, this requires significant amounts of time and money; thus, numerous models for predicting soil depth have been proposed. However, they still have limitations in terms of practicality and accuracy. In this study, 71 seismic survey results were collected from domestic mountainous areas to estimate soil depth on hill slopes. Soil depth was estimated on the basis of a shear wave velocity of 700 m/s, and a database was established for slope angle, elevation, and soil depth. Consequently, the statistical characteristics of soil depth were analyzed, and the correlations between slope angle and soil depth, and between elevation and soil depth were investigated. Moreover, various soil depth prediction models based on slope angle were investigated, and corrected linear and exponential soil depth prediction models were proposed.

A Comparative Study on Discrimination Issues in Large Language Models (거대언어모델의 차별문제 비교 연구)

  • Wei Li;Kyunghwa Hwang;Jiae Choi;Ohbyung Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.125-144
    • /
    • 2023
  • Recently, the use of Large Language Models (LLMs) such as ChatGPT has been increasing in various fields such as interactive commerce and mobile financial services. However, LMMs, which are mainly created by learning existing documents, can also learn various human biases inherent in documents. Nevertheless, there have been few comparative studies on the aspects of bias and discrimination in LLMs. The purpose of this study is to examine the existence and extent of nine types of discrimination (Age, Disability status, Gender identity, Nationality, Physical appearance, Race ethnicity, Religion, Socio-economic status, Sexual orientation) in LLMs and suggest ways to improve them. For this purpose, we utilized BBQ (Bias Benchmark for QA), a tool for identifying discrimination, to compare three large-scale language models including ChatGPT, GPT-3, and Bing Chat. As a result of the evaluation, a large number of discriminatory responses were observed in the mega-language models, and the patterns differed depending on the mega-language model. In particular, problems were exposed in elder discrimination and disability discrimination, which are not traditional AI ethics issues such as sexism, racism, and economic inequality, and a new perspective on AI ethics was found. Based on the results of the comparison, this paper describes how to improve and develop large-scale language models in the future.

An Evaluation of Development Plans for Rolling Stock Maintenance Shop Using Computer Simulation - Emphasizing CDC and Generator Car - (시뮬레이션 기법을 이용한 철도차량 중정비 공장 설계검증 - 디젤동차 및 발전차 중정비 공장을 중심으로 -)

  • Jeon, Byoung-Hack;Jang, Seong-Yong;Lee, Won-Young;Oh, Jeong-Heon
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.23-34
    • /
    • 2009
  • In the railroad rolling stock depot, long-term maintenance tasks is done regularly every two or four year basis to maintain the functionality of equipments and rolling stock body or for the repair operation of the heavily damaged rolling stocks by fatal accidents. This paper addresses the computer simulation model building for the rolling stock maintenance shop for the CDC(Commuter Diesel Car) and Generator Car planned to be constructed at Daejon Rolling Stock Depot, which will be moved from Yongsan Rolling Stock Depot. We evaluated the processing capacity of two layout design alternatives based on the maintenance process chart through the developed simulation models. The performance measures are the number of processed cars per year, the cycle time, shop utilization, work in process and the average number waiting car for input. The simulation result shows that one design alternative outperforms another design alternative in every aspect and superior design alternative can process total 340 number of trains per year 15% more than the proposed target within the current average cycle time.

Development of Simulator for Analyzing Intercept Performance of Surface-to-air Missile (지대공미사일 요격 성능 분석 시뮬레이터 개발)

  • Kim, Ki-Hwan;Seo, Yoon-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.63-71
    • /
    • 2010
  • In modern war, Intercept Performance of SAM(Surface to Air Missile) is gaining importance as range and precision of Missile and Guided Weapon on information warfare have been improved. An aerial defence system using Surface-to-air Radar and Guided Missile is needed to be built for prediction and defense from threatening aerial attack. When developing SAM, M&S is used to free from a time limit and a space restriction. M&S is widely applied to education, training, and design of newest Weapon System. This study was conducted to develop simulator for evaluation of Intercept Performance of SAM. In this study, architecture of Intercept Performance of SAM analysis simulator for estimation of Intercept Performance of various SAM was suggested and developed. The developed Intercept Performance of SAM analysis simulator was developed by C++ and Direct3D, and through 3D visualization using the Direct3D, it shows procedures of the simulation on a user animation window. Information about design and operation of Fighting model is entered through input window of the simulator, and simulation engine consisted of Object Manager, Operation Manager, and Integrated Manager conducts modeling and simulation automatically using the information, so the simulator gives user feedback in a short time.

Development of Machine Learning Based Precipitation Imputation Method (머신러닝 기반의 강우추정 방법 개발)

  • Heechan Han;Changju Kim;Donghyun Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.3
    • /
    • pp.167-175
    • /
    • 2023
  • Precipitation data is one of the essential input datasets used in various fields such as wetland management, hydrological simulation, and water resource management. In order to efficiently manage water resources using precipitation data, it is essential to secure as much data as possible by minimizing the missing rate of data. In addition, more efficient hydrological simulation is possible if precipitation data for ungauged areas are secured. However, missing precipitation data have been estimated mainly by statistical equations. The purpose of this study is to propose a new method to restore missing precipitation data using machine learning algorithms that can predict new data based on correlations between data. Moreover, compared to existing statistical methods, the applicability of machine learning techniques for restoring missing precipitation data is evaluated. Representative machine learning algorithms, Artificial Neural Network (ANN) and Random Forest (RF), were applied. For the performance of classifying the occurrence of precipitation, the RF algorithm has higher accuracy in classifying the occurrence of precipitation than the ANN algorithm. The F1-score and Accuracy values, which are evaluation indicators of the classification model, were calculated as 0.80 and 0.77, while the ANN was calculated as 0.76 and 0.71. In addition, the performance of estimating precipitation also showed higher accuracy in RF than in ANN algorithm. The RMSE of the RF and ANN algorithms was 2.8 mm/day and 2.9 mm/day, and the values were calculated as 0.68 and 0.73.