• Title/Summary/Keyword: Model Based Adaptive Control

Search Result 668, Processing Time 0.031 seconds

Observer Based Adaptive Control of Longitudinal Motion of Vehicles (관측자를 이용한 직진 주행 차량의 적응 제어)

  • Kim, Eung-Seok;Kim, Dong-Hun;Yang, Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.130-135
    • /
    • 2001
  • In this paper, an observer-based adaptive controller is proposed to control the longitudinal motion of vehicles. The standard gradient method will be used to estimate the vehicle parameters, mass, time constant, etc. The nonlinear model between the driving force and the vehicle acceleration will be chosen to design the state observer for the vehicle velocity and acceleration. It will be shown that the proposed observer is exponentially stable, and that the adaptive controller proposed on this paper is stable. It will be proved that the errors of the relative distance, velocity and acceleration converge to zero asymptotically fast, and that the overall system is also asymptotically stable. The simulation results are presented to investigate the effectiveness of the proposed method.

  • PDF

Advanced controller design for AUV based on adaptive dynamic programming

  • Chen, Tim;Khurram, Safiullahand;Zoungrana, Joelli;Pandey, Lallit;Chen, J.C.Y.
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.233-260
    • /
    • 2020
  • The main purpose to introduce model based controller in proposed control technique is to provide better and fast learning of the floating dynamics by means of fuzzy logic controller and also cancelling effect of nonlinear terms of the system. An iterative adaptive dynamic programming algorithm is proposed to deal with the optimal trajectory-tracking control problems for autonomous underwater vehicle (AUV). The optimal tracking control problem is converted into an optimal regulation problem by system transformation. Then the optimal regulation problem is solved by the policy iteration adaptive dynamic programming algorithm. Finally, simulation example is given to show the performance of the iterative adaptive dynamic programming algorithm.

Joint frame rate adaptation and object recognition model selection for stabilized unmanned aerial vehicle surveillance

  • Gyu Seon Kim;Haemin Lee;Soohyun Park;Joongheon Kim
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.811-821
    • /
    • 2023
  • We propose an adaptive unmanned aerial vehicle (UAV)-assisted object recognition algorithm for urban surveillance scenarios. For UAV-assisted surveillance, UAVs are equipped with learning-based object recognition models and can collect surveillance image data. However, owing to the limitations of UAVs regarding power and computational resources, adaptive control must be performed accordingly. Therefore, we introduce a self-adaptive control strategy to maximize the time-averaged recognition performance subject to stability through a formulation based on Lyapunov optimization. Results from performance evaluations on real-world data demonstrate that the proposed algorithm achieves the desired performance improvements.

Adaptive Backstepping Controller Design for a Permanent Magnet Synchronous Motor using Speed Observer (속도관측기를 활용한 영구자석동기전동기의 적응 백스테핑 제어기 설계)

  • 현근호;양해원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.5
    • /
    • pp.347-353
    • /
    • 2003
  • A nonlinear speed controller for a surface mounted permanent magnet synchronous motor (PMSM) based on a newly developed adaptive backstepping approach is presented To compensate parameter uncertainties and load torque disturbance, a nonlinear adaptive backstepping control law and adaptive law are derived systematically through virtual control input and suitable Lyapunov function. Also, speed observer without using costly speed sensor is presented. Simulation results show that the proposed controller can observe the speed and track the reference speed signal generated by a reference model.

Modeling and designing intelligent adaptive sliding mode controller for an Eight-Rotor MAV

  • Chen, Xiang-Jian;Li, Di
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.172-182
    • /
    • 2013
  • This paper focuses on the modeling and intelligent control of the new Eight-Rotor MAV, which is used to solve the problem of the low coefficient proportion between lift and gravity for the Quadrotor MAV. The Eight-Rotor MAV is a nonlinear plant, so that it is difficult to obtain stable control, due to uncertainties. The purpose of this paper is to propose a robust, stable attitude control strategy for the Eight-Rotor MAV, to accommodate system uncertainties, variations, and external disturbances. First, an interval type-II fuzzy neural network is employed to approximate the nonlinearity function and uncertainty functions in the dynamic model of the Eight-Rotor MAV. Then, the parameters of the interval type-II fuzzy neural network and gain of sliding mode control can be tuned on-line by adaptive laws based on the Lyapunov synthesis approach, and the Lyapunov stability theorem has been used to testify the asymptotic stability of the closed-loop system. The validity of the proposed control method has been verified in the Eight-Rotor MAV through real-time experiments. The experimental results show that the performance of the interval type-II fuzzy neural network based adaptive sliding mode controller could guarantee the Eight-Rotor MAV control system good performances under uncertainties, variations, and external disturbances. This controller is significantly improved, compared with the conventional adaptive sliding mode controller, and the type-I fuzzy neural network based sliding mode controller.

Direct Adaptive Control of Nonminimum Phase Systems Using Novel Estimation Algorithm (새로운 추정 알고리즘을 이용한 비최소 위상 시스템의 직접 적응 제어)

  • Lee, Seon-Woo;Kim, Jong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.377-380
    • /
    • 1992
  • This paper proposes a novel direct adaptive pole placement control algorithm which can be applied to continuous time nonminimum phase systems. The algorithm is based on Lyapunov's direct method. By introducing an auxiliary signal, a minimal error model is constructed in state space. Using the error model an estimation law is obtained via Lyapunov's second stability theorem. The global stability of the overall system is established.

  • PDF

A Study on Adaptive Control of AGV using Immune Algorithm (면역알고리즘을 이용한 AGV의 적응제어에 관한 연구)

  • 이영진;최성욱;손주한;이진우;조현철;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.04a
    • /
    • pp.56-63
    • /
    • 2000
  • Abstract - In this paper, an adaptive mechanism based on immune algorithm is designed and it is applied for the autonomous guided vehicle(AGV) driving. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are adjusted almost randomly. To solve this problem, a neural network is used to model the plant and the parameter tuning of the model is performed by the immune algorithm. After the PID parameters are determined in this off-line manner, these gains are then applied to the plant for the on-line control using immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough intially, the weighting parameters are adjusted to be accurate through the on-line fine tuning. The computer simulation for the control of steering and speed of AGV is performed. The results show that the proposed controller has better performances than other conventional controllers.

  • PDF

Reconfigurable Flight Control Law Using Adaptive Neural Networks and Backstepping Technique (백스테핑기법과 신경회로망을 이용한 적응 재형상 비행제어법칙)

  • 신동호;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.329-339
    • /
    • 2003
  • A neural network based adaptive controller design method is proposed for reconfigurable flight control systems in the presence of variations in aerodynamic coefficients or control effectiveness decrease caused by control surface damage. The neural network based adaptive nonlinear controller is developed by making use of the backstepping technique for command following of the angle of attack, sideslip angle, and bank angle. On-line teaming neural networks are implemented to guarantee reconfigurability and robustness to the uncertainties caused by aerodynamic coefficients variations. The main feature of the proposed controller is that the adaptive controller is designed with assumption that not any of the nonlinear functions of the system is known accurately, whereas most of the previous works assume that only some of the nonlinear functions are unknown. Neural networks loam through the weight update rules that are derived from the Lyapunov control theory. The closed-loop stability of the error states is also investigated according to the Lyapunov theory. A nonlinear dynamic model of an F-16 aircraft is used to demonstrate the effectiveness of the proposed control law.

T-S Fuzzy Model-Based Adaptive Synchronization of Chaotic System with Unknown Parameters (T-S 퍼지 모델을 이용한 불확실한 카오스 시스템의 적응동기화)

  • Kim, Jae-Hun;Park, Chang-Woo;Kim, Eun-Tai;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.270-275
    • /
    • 2005
  • This paper presents a fuzzy model-based adaptive approach for synchronization of chaotic systems which consist of the drive and response systems. Takagi-Sugeno (T-S) fuzzy model is employed to represent the chaotic drive and response systems. Since the parameters of the drive system are assumed unknown, we design the response system that estimates the parameters of the drive system by adaptive strategy. The adaptive law is derived to estimate the unknown parameters and its stability is guaranteed by Lyapunov stability theory. In addition, the controller in the response system contains two parts: one part that can stabilize the synchronization error dynamics and the other part that estimates the unknown parameters. Numerical examples, including Doffing oscillator and Lorenz attractor, are given to demonstrate the validity of the proposed adaptive synchronization approach.

Longitudinal Automatic Landing in AdaptivePID Control Law Under Wind Shear Turbulence

  • Ha, Cheol-keun;Ahn, Sang-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.30-38
    • /
    • 2004
  • This paper deals with a problem of automatic landing guidance and control ofthe longitudinal airplane motion under the wind shear turbulence. Adaptive gainscheduled PID control law is proposed in this paper. Fuzzy logic is the main part ofthe adaptive PID controller as gain scheduler. To illustrate the successful applicationof the proposed control law to the automatic landing control problem, numericalsimulation is carried out based on the longitudinal nonlinear airplane model excited bythe wind shear turbulence. The simulation results show that the automatic landingmaneuver is successfully achieved with the satisfactory performance and the gainadaptation of the control law is made adequately within the limited gains.