• Title/Summary/Keyword: Model Based Adaptive Control

Search Result 668, Processing Time 0.029 seconds

Study on Satellite Vibration Control using Adaptive Control Scheme

  • Oh, Se-Boung;Oh, Choong-Seok;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.1-16
    • /
    • 2005
  • Adaptive control methods are studied for the Satellite to isolate vibration in spite of the nonlinear system dynamics and parameter uncertainties of disturbance. First, a centralized control scheme is developed based on the particle swarm optimization(PSO) algorithm and feedback theory to automatically tune controller gains. A simulation study of a 3 degree-of-freedom device was conducted to evaluate the performance of the proposed control scheme. Next, since a centralized control scheme is hard to construct model dynamics and not goad at performance when controller and systems environment are easily changed, a decentralized control scheme is presented to avoid these defects of the centralized control scheme from the point of view of production and maintenance. It is based on the adaptive control methodologies to find PID controller parameters. Experiment studies were conducted to apply the adaptive control scheme and evaluate the performance of the proposed control scheme with those of the conventional control schemes.

A Study on Driving Control of an Autonomous Guided Vehicle using Humoral Immune Algorithm Adaptive PID Controller based on Neural Network Identifier Technique (신경회로망 동정기법에 기초한 HIA 적응 PID 제어기를 이용한 AGV의 주행제어에 관한 연구)

  • Lee Young Jin;Suh Jin Ho;Lee Kwon Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.65-77
    • /
    • 2004
  • In this paper, we propose an adaptive mechanism based on immune algorithm and neural network identifier technique. It is also applied fur an autonomous guided vehicle (AGV) system. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are almost adjusted randomly. To solve this problem, we use the neural network identifier (NNI) technique fur modeling the plant and humoral immune algorithm (HIA) which performs the parameter tuning of the considered model, respectively. After the PID parameters are determined in this off-line manner, these gains are then applied to the plant for the on-line control using an immune adaptive algorithm. Moreover, even though the neural network model may not be accurate enough initially, the weighting parameters are adjusted to be accurate through the on-line fine tuning. Finally, the simulation and experimental result fur the control of steering and speed of AGV system illustrate the validity of the proposed control scheme. These results for the proposed method also show that it has better performance than other conventional controller design methods.

Adaptive NFC Control for High Performance Control of SPMSM Drive (SPMSM 드라이브의 고성능 제어를 위한 적응 NFC 제어)

  • Lee Jung-Chul;Lee Hong-Gyun;Lee Young-Sil;Nam Su-Myeong;Park Gi-Tae;Chung Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1248-1250
    • /
    • 2004
  • This paper is proposed adaptive fuzzy-neural network controller(NFC) for speed control of surface permanent magnet synchronous motor(SPMSM) drive. The design of this algorithm based on NFC that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive NFC is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

Adaptive State Feedback Control for Nonlinear Rotary Inverted Pendulum System using Similarity Transformation Method: Implementation of Real-Time Experiment (유사변환기법을 이용한 비선형 회전식 역진자의 적응형 상태궤환 제어시스템: 실시간 실험 구현)

  • Cho, Hyun-Cheol;Lee, Young-Jin;Lee, Kwon-Soon;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.130-135
    • /
    • 2009
  • In recent years, researches on rotary inverted pendulum control systems have been significantly focused due their highly nonlinear dynamics and complicated geometric structures. This paper presents a novel control approach for such systems by means of similarity transformation theory. At first, we represent nonlinear system dynamics to the controllability-formed state space model including a time-varying parameter vector. We establish the state-feedback control configuration based on the transformed model and derive an adaptive control law for adjusting desired characteristic equation. Numerical analysis is achieved to evaluate our control method and demonstrate its superiority by comparing it to the traditional control strategy. Furthermore, real-time control experiment is carried out to test its practical reliability.

Sensorless Vector Control of Induction Motors for Wind Energy Applications Using MRAS and ASO

  • Jeong, Il-Woo;Choi, Won-Shik;Park, Ki-Hyeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.873-881
    • /
    • 2014
  • Speed sensorless modes of operation are becoming standard solution in the area of electric drives. This paper presents flux estimator and speed estimator for the speed sensorless vector control of induction motors. The proposed sensorless methods are based on the model reference adaptive system (MRAS) observer and adaptive speed observer (ASO). The proposed speed estimation algorithm can be employed in the power control of grid connected induction generator for wind power applications. Two proposed schemes are verified through computer simulation PSIM and compared their simulation results.

An Adaptive Flight Control Law Design for the ALFLEX Flight Control System

  • Imai, Kanta;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.148.5-148
    • /
    • 2001
  • In this report, an adaptive flight control law based on a linear-parameter-varying (LPV) model is presented for a flight control system. The control system is designed to track an output of a vehicle to a reference signal from the guidance system, which generates a reference flight path. The proposed adaptive control law adjusts the controller gains continuously on line as flight conditions change. The obtained adaptive controller guarantees global stability over a wide flight envelope. Computer simulation involving six-degree-of-freedom nonlinear flight dynamics is applied to Japan´s automatic landing flight experimental vehicle (ALFLEX) to examine the effectiveness of the proposed adaptive flight control law.

  • PDF

Performance Evaluation of Multi-Hazard Adaptive Smart Control Technique Based on Connective Control System (연결 제어 시스템 기반의 멀티해저드 적응형 스마트 제어 기술 성능 평가)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.97-104
    • /
    • 2018
  • A connected control method for the adjacent buildings has been studied to reduce dynamic responses. In these studies, seismic loads were generally used as an excitation. Recently, multi-hazards loads including earthquake and strong wind loads are employed to investigate control performance of various control systems. Accordingly, strong wind load as well as earthquake load was adopted to evaluate control performance of adaptive smart coupling control system against multi-hazard. To this end, an artificial seismic load in the region of strong seismicity and an artificial wind load in the region of strong winds were generated for control performance evaluation of the coupling control system. Artificial seismic and wind excitations were made by SIMQKE and Kaimal spectrum based on ASCE 7-10. As example buildings, two 20-story and 12-story adjacent buildings were used. An MR (magnetorheological) damper was used as an adaptive smart control device to connect adjacent two buildings. In oder to present nonlinear dynamic behavior of MR damper, Bouc-Wen model was employed in this study. After parametric studies on MR damper capacity, optimal command voltages for MR damper on each seismic and wind loads were investigated. Based on numerical analyses, it was shown that the adaptive smart coupling control system proposed in this study can provide very good control performance for Multi-hazards.

Adaptive Parameter Estimator Design for Takagi-Sugeno Fuzzy Models

  • Park, Chang-Woo;Lee, Chang-Hoon;Park, Mignon;Kim, Seungho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.40.5-40
    • /
    • 2001
  • In this paper, a new on-line parameter estimation methodology for the general continuous time Takagi-Sugeno(T-S) fuzzy model whose parameters are poorly known or uncertain is presented. An estimator with an appropriate adaptive law for updating the parameters is designed and analyzed based on the Lyapunov theory. The adaptive law is designed so that the estimation model follows the plant parameterized model. By the proposed estimator, the parameters of the T-S fuzzy model can be estimated by observing the behavior of the system and it can be a basis for the indirect adaptive fuzzy control.

  • PDF

Adaptive second-order nonsingular terminal sliding mode power-level control for nuclear power plants

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1644-1651
    • /
    • 2022
  • This paper focuses on the power-level control of nuclear power plants (NPPs) in the presence of lumped disturbances. An adaptive second-order nonsingular terminal sliding mode control (ASONTSMC) scheme is proposed by resorting to the second-order nonsingular terminal sliding mode. The pre-existing mathematical model of the nuclear reactor system is firstly described based on point-reactor kinetics equations with six delayed neutron groups. Then, a second-order sliding mode control approach is proposed by integrating a proportional-derivative sliding mode (PDSM) manifold with a nonsingular terminal sliding mode (NTSM) manifold. An adaptive mechanism is designed to estimate the unknown upper bound of a lumped uncertain term that is composed of lumped disturbances and system states real-timely. The estimated values are then added to the controller, resulting in the control system capable of compensating the adverse effects of the lumped disturbances efficiently. Since the sign function is contained in the first time derivative of the real control law, the continuous input signal is obtained after integration so that the chattering effects of the conventional sliding mode control are suppressed. The robust stability of the overall control system is demonstrated through Lyapunov stability theory. Finally, the proposed control scheme is validated through simulations and comparisons with a proportional-integral-derivative (PID) controller, a super twisting sliding mode controller (STSMC), and a disturbance observer-based adaptive sliding mode controller (DO-ASMC).

Single Channel Active Noise Control using Adaptive Model (적응모델을 이용한 단일채널 능동 소음제어)

  • Kim, Yeong-Dal;Lee, Min-Myeong;Jeong, Chang-Gyeong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.442-450
    • /
    • 2000
  • Active noise control is an approach to noise reduction in which a secondary noise source that destructively interferes with the unwanted noise. In general, active noise control systems rely on multiple sensors to measure the unwanted noise field and the effect of the cancellation. This paper develops an approach that utilizes a single sensor. The noise field is modeled as a stochastic process, and a time-adaptive algorithm is used to adaptively estimate the parameters of the process. Based on these parameter estimates, a canceling signal is generated. Opppenheim model assumed that transfer function characteristics from the canceling source to the error sensor is only propagation delay. But this paper proposes a modified Oppenheim model by considering transfer characteristics of acoustic device and noise path. This transfer characteristics is adaptively cancelled by adaptive model. This is proved by computer simulation with artifically generated random noise and sine wave noise. The details of the proposed architecture, and theoretical simulation and experimental results of the noise cancellation system for three dimension enclosure are presented in the paper.

  • PDF