• Title/Summary/Keyword: Mode-converted Lamb Waves

Search Result 3, Processing Time 0.02 seconds

The Evolution of Electromechanical Admittance from Mode-converted Lamb Waves Reverberating on a Notched Beam (노치가 있는 보에서 잔향하는 모드변환 램파의 전기역학적 어드미턴스 전이)

  • Kim, Eun Jin;Park, Hyun Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.270-280
    • /
    • 2016
  • This paper investigates the evolution of EM admittance of piezoelectric transducers mounted on a notched beam from wave propagation perspective. A finite element analysis is adopted to obtain numerical solutions for Lamb waves reverberating on the notched beam. The mode-converted Lamb wave signals due to a notch are extracted by using the polarization characteristics of piezoelectric transducers collocated on the beam. Then, a series of temporal spectrums are computed to demonstrate the evolution of EM admittance through fast Fourier transform of the mode-converted Lamb wave signals which are consecutively truncated in the time domain. When truncation time is relatively small, the corresponding temporal spectrum is governed by the characteristics of the input driving frequency. As truncation time becomes large, however, the modal characteristics of the notched beam play a crucial role in the temporal spectrum within the input driving frequency band. This implies that mode-converted Lamb waves reverberating on the beam contributes to the resonance of the beam. The root mean square values are computed for the temporal spectrums in the vicinity of each resonance frequency. The root mean square values increase monotonically with respect to truncation time for any resonance frequencies. Finally the implications of the numerical observation are discussed in the context of damage detection of a beam.

Quantitative Estimation of Transmitted and Reflected Lamb Waves at Discontinuity (불연속면에서 램파의 반사와 투과에 대한 정량적 추정)

  • Lim, Hyung-Jin;Sohn, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.359-366
    • /
    • 2010
  • For the application of Lamb wave to structural health monitoring(SHM), understanding its physical characteristic and interaction between Lamb wave and defect of the host structure is an important issue. In this study, reflected, transmitted and mode converted Lamb waves at discontinuity of a plate structure were simulated and the amplitude ratios are calculated theoretically using Modal decomposition method. The predicted results were verified comparing with finite element method(FEM) and experimental results simulating attached PZTs. The result shows that the theoretical prediction is close to the FEM and the experimental verification. Moreover, quantitative estimation method was suggested using amplitude ratio of Lamb wave at discontinuity.

Mode conversion in nondestructive nonlinear acoustic method for defect detection in a layer-structured material

  • Roh Heui-Seol;Yoon Suk Wang
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.219-222
    • /
    • 2001
  • Nondestructive nonlinear acoustic method in two dimensions is suggested as a useful tool for detecting defects in a composite layer-structured material. Spectrum level changes in fundamental and harmonic frequencies are observed in the presence of a layer type defect compared with in the absence of such a defect. It is proposed in this study that such spectrum changes we due to the mode conversion. The layer type defect makes different normal modes due to different boundary conditions in the thickness direction for the Lamb waves propagating in a layer-structured material. Specifically, the normal mode with the fundamental frequency in the case of the water-layer gap is converted to the normal mode with the second harmonic frequency in the case of the air-layer gap.

  • PDF