• Title/Summary/Keyword: Mode-Coupling

Search Result 779, Processing Time 0.036 seconds

Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect (연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석)

  • Lim, Ha-Seong;Kwon, Sung-Hun;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1354-1359
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

  • PDF

Bus-waveguide-width Dependence of Evanescent Wave Coupling in a Microring Resonator

  • Son, Seong-Jin;Kim, Suyeon;Yu, Nan Ei;Ko, Do-Kyeong
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.538-543
    • /
    • 2021
  • The evanescent wave coupling of a microring resonator is controlled by changing the gap distance between the bus waveguide and the microring waveguide. However, the interdependence of the bus waveguide's width and the coupling is not well understood. In this paper, we investigate the dependence of coupling strength on the bus waveguide's width. The strength of the evanescent wave coupling is analytically calculated using coupled-mode theory (CMT) and numerically calculated by three-dimensional finite-difference-time-domain (FDTD) simulation. The analytic and numerical simulation results show that the phase-matching condition in evanescent wave coupling does not provide maximum coupling strength, because both phase-matching and mode confinement influence the coupling. The analytic and simulation results for the evanescent coupling correspond to the experimental results. The optimized bus-waveguide width that provides maximum coupling strength results in intrinsic quality factors of up to 1.3 × 106. This study provides reliable guidance for the design of microring resonators, depending on various applications.

Acoustic Coupling between Longitudinal and Transverse Modes in an Annular Gas Turbine Combustor (환형 가스터빈 연소기에서 종방향 및 횡방향 음향모드 커플링)

  • Kim, Jihwan;Kim, Daesik
    • Journal of the Korean Society of Combustion
    • /
    • v.23 no.1
    • /
    • pp.13-20
    • /
    • 2018
  • Transverse acoustic mode in annular combustion chambers affects air-fuel mixing characteristics in the nozzle and can result in heat release fluctuations in the combustor. In addition, the acoustic mode coupling between the nozzle and the combustion chamber is one of the key parameters determining combustion instability phenomenon in the annular combustor. In this study, acoustic coupling between the nozzle and annular combustor was numerically analyzed using 3D-based in house FEM code. As a result, it was found that the acoustic mode inside the combustion chamber at anti-node locations of the transverse mode was strongly influenced by the nozzle inlet boundary conditions.

Secondary buckling analysis of spherical caps

  • Kato, Shiro;Chiba, Yoshinao;Mutoh, Itaru
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.715-728
    • /
    • 1997
  • The aim of this paper is to investigate the secondary buckling behaviour and mode-coupling of spherical caps under uniformly external pressure. The analysis makes use of a rotational finite shell element on the basis of strain-displacement relations according to Koiter's shell theory (Small Finite Deflections). The post-buckling behaviours after a bifurcation point are analyzed precisely by considering multi-mode coupling between several higher order harmonic wave numbers: and on the way of post-buckling path the positive definiteness of incremental stiffness matrix of uncoupled modes is examined step by step. The secondary buckling point that has zero eigen-value of incremental stiffness matrix and the corresponding secondary mode are obtained, moreover, the secondary post-buckling path is traced.

Analysis of ion-exchanged waveguides by using Prism-Coupling method (Prism-Coupling 방법에 의한 이온교환 도파로 해석)

  • 박정일;박태성;이현용;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.37-39
    • /
    • 1994
  • We have investigated the characteristics of planar optical waveguides formed by silver ion-exchange. Experimental values of the effective indices of guided modes were obtained by measuring the synchronous angles of strongest coupling. Definition of an effective diffusion constant leads to the mode-dispersion curves applicable over a wide range of fabrication conditions. In order to compare experimental and theoretical results, We have plotted each mode index of a wide range of fabrication conditions.

Design and analysis of a mode size converter composed of periodically segmented taper waveguide surrounded by trenches (좌우 트렌치를 구비한 분리 주기 테이퍼 도파로 모드 크기 변환기의 설계 및 성능 분석)

  • Park Bo Gen;Chung Young Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.12
    • /
    • pp.43-49
    • /
    • 2004
  • In this paper, we have designed a mode size converter to reduce coupling loss between super-high delta silica optical waveguides and single mode fibers. The new mode size converter has three design aspects; periodically segmented taper waveguide for minimal size, lateral taper waveguide for simple fabrication, and surrounding trenches to improve coupling loss. In the optimal mode size converter design, coupling loss is 0.33dB/point without trenches and 0.2dB/point with trenches.

All-optical Internodal Switching in Two-mode Waveguide (이중모드 광섬유내에서의 전 광(All-optical) 모드 변환 스위칭)

  • 박희갑
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.119-122
    • /
    • 1989
  • An intermodal switch based on optically-induced (through optical Kerr effect) periodic coupling in a two-mode waveguide is described and demonstrated. A high power pump beam injected into the two modes of the waveguide produced a periodic modulation of the refractive index profile with a period of modal beat length. this causes an intermodal coupling of the prove beam. The operating principle was successfully demonstrated in an elliptical core two-mode fiber with a counter-propagating pump-probe scheme.

  • PDF

Design of Multi-Layer Dual-Band Bandpass Filter Using Aperture-Coupling (개구 결합을 이용한 적층형 이중 대역 대역 통과 여파기 설계)

  • Shin, Bong-Geol;Lee, Ja-Hyeon;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.598-605
    • /
    • 2012
  • In this paper, a multi-layer dual-band bandpass filter using aperture-coupling is proposed. Two coupling paths are formed with the two apertures which exist between two dual-mode resonators. The coupling coefficients can be adjusted without changing the shape of resonators. The bandwidth of the second passband can be adjusted without affecting the bandwidth of the first passband using the size of an aperture between stubs of the dual-mode resonator. The aperture coupling mechanism is theoretically analysed. The dual-mode bandpass filter for the 2.4 GHz WLAN, 3.5 GHz WiMax was designed and fabricated. The fabricated filter shows centered 2.45 GHz and 3.5 GHz with 9 % and 8 % of the bandwidth.

Single mode yield analysis of complex-coupled DFB lasers above threshold for various coupling coefficient ratios and facet reflectivity combinations (문턱 전류 이상에서 Complex-Coupled DFB 레이저 다이오드의 여러 가지 결합 계수 비와 양 단면 반사율 조합에 따른 단일 모드 수율 해석)

  • 김부균;김상택;전재두
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.5
    • /
    • pp.521-529
    • /
    • 2003
  • For complex-coupled (CC) DFB lasers, we found that there might be little correlation between the single mode yields at threshold and above threshold. At threshold, the single mode yield considering f number of in-phase (IP) CC DFB lasers is the same as that of anti-phase (AP) CC DFB lasers. However, the single mode yield as a function of injection current above threshold of IP CC DFB lasers is much different from that of AP CC DFB lasers. In the case of IP CC DFB lasers, the single mode yield increases as the coupling coefficient ratio (CR) increases, while, in the case of AP CC DFB lasers, the single mode yield decreases rapidly regardless of CR as the injection current increases. In the case of AR-HR combinations, the effect of AR ref1ectivity on the single mode yield increases as the coupling strength decreases. As the coupling strength decreases, the CR at which the increase rate of the single mode yield starts to decrease, increases, and the maximum single mode yield increases. Single mode yields of AR-HR and AR-AR combinations are larger than those of AR-CL and CL-CL combinations.

A novel mode shape converter for polymer Rib waveguide (폴리머 립 광도파로를 위한 새로운 모드 모양 변화기)

  • 김덕봉;조정환;이상윤;장우혁;이태형
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.2
    • /
    • pp.119-122
    • /
    • 2000
  • We proposed a novel mode shape converter (MSC) that can effectively reduce the coupling loss between polymer rib waveguide and single mode fiber. The double-nb geometry that was used in the novel MSC converted an elliptical mode to circular mode and an circular mode to elliptical mode. This structure can be easily realized by using the typical fabrication process for polymer wavegUide. Simulation using a three dimensional beam propagation method showed that the novel MSC has a coupling loss of 0.079 dB/facet and total lllsertioll loss of less than 0.2 dB. .2 dB.

  • PDF