• Title/Summary/Keyword: Mode synthesis

Search Result 334, Processing Time 0.025 seconds

Modal Analysis of Steel Box Bridge by Using the Component Mode Synthesis (CMS 방법에 의한 강교량의 동적모드해석)

  • 조병완;박종칠;김영진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.177-184
    • /
    • 1997
  • The Component Mode Synthesis Method for the -vibration analysis can be applied to the large-scaled structures, which have difficulty in modeling because of their intricate shapes and boundary conditions and need much time in computational calculations. This paper uses the Component Mode Synthesis Method to analyze the free vibration for the steel box bridge having the large number of D.O.F as an example of the large structural system. By comparing the CMS method to the other method (FEM), this paper proves the accuracy of the solution in techniques and the efficiency in time.

  • PDF

Analysis of a Flexible Multi-body System with Over-constraints (여유구속을 갖는 유연체 기계시스템의 동역학 해석)

  • Seo, Jong-Hwi;Park, Tae-Won;Chae, Jang-Soo;Seo, Hyun-Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.874-880
    • /
    • 2003
  • Many mechanical systems are over-constrained if only rigid bodies are used to model the system. One example of such system is a satellite system with solar panels. To avoid this over-constrained problem, solar panels can be modeled as flexible bodies. The CMS(Component Mode Synthesis) method is widely used to analyze the flexible multi-body system because it can considerably approximate the deformation of the flexible bodies using small number of well-selected mode. However, it is very difficult to decide the boundary condition and the selection of modes. In this paper, the methods for mode synthesis and setting the boundary condition are presented to analyze the flexible multi-body system with over-constraints. Finally, the reliability of proposed method is verified by solar panel's deployment test.

  • PDF

A Study on the Vibration Characteristics of Weaving Machine Structure using Component Mode Synthesis (부분구조합성법을 이용한 제직기 구조물의 진도특성에 관한 연구)

  • 권상석;김병옥;전두환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.535-539
    • /
    • 2001
  • In these days. the finite element method(FEM) is a very common method for not only a simple vibration analysis but also the optimization of structures. Since the finite element model may contain thousands of degree of freedom, the eigensolutions require extreme computing power, which will result in a serious time-consuming problem. Thus, many researchers have challenged to find more improved modeling techniques and calculating methods to overcome such problems. The Guyan reduction method and the substructure synthesis method are typical examples of such methods. Of the substructure synthesis method, the component mode synthesis method (CMS) is widely used for dynamic analysis of structure. In this study. for the efficient analysis of jet loom structure. Component Mode Synthesis was carried out. The results of the finite element program developed are compared with those of the commercial package program ANSYS for the validation of the program. The results obtained by the program showed a good agreement with those of ANSYS. The program will be further refined and verified by test to yield more accurate results.

  • PDF

Sliding Mode Analysis Using Substructure Synthesis Method (부구조물 합성법을 이용한 슬라이딩 모드 해석)

  • Kim, Dae-Kwan;Lee, Min-Su;Han, Jae-Hung;Ko, Tae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1366-1371
    • /
    • 2006
  • A structural coupling method is developed for the dynamic analysis of a nonlinear structure with concentrated nonlinear hinge joints or sliding lines. Component mode synthesis method is extended to couple substructures and the nonlinear models. In order to verify the improved coupling method, a numerical plate model consisting of two substructures and torsional springs, is synthesized by using the proposed method and its model parameters are compared with analysis data. Then the coupling method is applied to a three-substructure-model with the nonlinearity of sliding lines between the substructures. The coupled structural model is verified from its dynamic analysis. The analysis results show that the improved coupling method is adequate for the structural nonlinear analyses with the nonlinear hinge and sliding mode condition.

  • PDF

Dynamic analysis of a flexible multibody system

  • Chae Jang-Soo;Park Taw-Won;Kim J.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.21-25
    • /
    • 2005
  • In the dynamic analysis of a mechanism, if one or more of the components are flexible, then the simulation will not be accurate because of the violation of the rigid body assumption. Mode shapes are used to represent the dynamic behavior of an elastic structure. A modal synthesis method which uses a combination of normal modes, constraint modes, and attachment modes, was used to represent effectively the elastic deformation of a flexible multibody. Since the combination of these modes should be different for each type of connecting part, the modal synthesis method was studied for the various types of interconnecting joints. In addition, the analysis procedure for the flexible body was explained. A satellite system with flexible solar panels was chosen as an example to show the effectiveness of the proposed method.

Modal Synthesis of a Car Body Structure Using an Improved Experimental Free-Interface Method (개선 실험 자유경계법을 이용한 차체 구조물의 모드합성)

  • Jang, Gyeong-Jin;Park, Yeong-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1427-1437
    • /
    • 2000
  • In the authors' preceeding paper, an improved component mode synthesis (CMS) technique in which experimental data as well as finite-element data are available in sub-systems has been proposed. Thi s technique, called an improved experimental free-interface method (IEFIM), has been proved to be more accurate and more efficient than the conventional experimental CMS method based on McNeal's formulation. It is due to the facts that dynamic residual terms as well as static ones are compensated from experimentally obtained FRFs and that FRFs measured on any frequencies can be used for the compensation. In this paper, the technique is applied to the component mode synthesis of a car body structure. As a result, the applicability of the technique to a large structure is demonstrated.

A Review of Mode Synthesis Techniques and Its Application Between FE and Experimental Model (부분 구조 합성법의 고찰 및 유한 요소 모델과 실험 모델과의 합성에 관한 연구)

  • 최재웅;이상설;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.799-806
    • /
    • 1989
  • Component mode synthesis (CMS) method can be divided into free, fixed and hybrid interface method according to each component's connecting conditions. In this paper, major mode synthesis methods were reviewed and their accuracies were examined by comparing the calculated eigenvalues with those from full finite element (FE) model. Also, CMS is expanded into the coupling between finite element (FE) and experimental model. Since the assumed experimental data seldom have slope information, the slope information at the interface points is prepared by curve-fitting of the calculated values. A simple beam structure to show the effectiveness of the above method, and we found that it can improve the accuracy of the synthesis method in calculation, expecially in the low modes.

Topology Optimization of Cylinder Block using Component Mode Synthesis (구분모드합성법을 이용한 실린더블록의 위상 최적 설계)

  • 윤성호;윤영근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.177-183
    • /
    • 2003
  • Vibration analysis using component mode synthesis method was carried out to identify that to some extent each component contributed to the whole vibration of a powertrain consisting of several components. This analysis helped decide the component to be modified to reduce the powertrain weight, without degrading its current vibration characteristics. As a result, a cylinder block was chosen as a redesign object. Topology optimization analysis was performed to design the topology of the cylinder block whose flange connected with the transmission was chosen to be the design domain. After all, a new prototype of cylinder block was manufactured based on the analysis results for the verification experiment. It was confirmed from the analytical and experimental results that u optimally designed cylinder block had an advantage over the current one in the powertrain weight, with the powertrain vibration characteristics improved slightly.

Vibration Analysis and Optimization of the Dynamic Characteristics of the Press Machine (The 1st Report, Vibration Analysis of the Press Machine) (프레스 기계의 진동해석과 동특성의 최적화(제 1보, 프레스 기계의 진동해석))

  • ;長松 昭男
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.34-41
    • /
    • 1990
  • Mode Synthesis Method is applied to analyize the vibration characteristics of the press machine sold at present. Vibration analysis of the machine has not been done thoroughly as far, because of its complicated structure and much bigger unlinearity of its vibration characteristics. The press was disassembled by parts, and it was experimented by the exciting techniques and curve fitting methods, and analyzed by the Mode Synthesis Method. The 2 results were showed good agreements at each part. We confirming it, the machine was assembled, and experimented and analyzed by the same method. Also good agreements between 2 methods were obtained. In addition, impact responses of the actual moving press were agreed with the analyzed values by the Mode Synthesis Method. And we found that the first bending mode of the slide was ruling the vibration characteristics of the press.

  • PDF

Vibration Analysis of Steam Turbine-Generator Rotor System Using Component Mode Synthesis Method (구분모드합성법을 이용한 증기터빈$\cdot$발전기축계의 진동해석)

  • Yang, B.S.;Kim, Y.H.;Choi, B.G.;Lee, H.
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.401-408
    • /
    • 1999
  • A method is presented for the vibration analysis of steam turbine-generator rotor system based on the component mode synthesis method. The motion of each component of the system is described by superposing constraint mode associated with boundary coordinates and constrained normal modes associated with internal coordinates. This method using real fixed-interface modes allows for significant reduction in system model size while retaining the essential dynamic characteristics of the lower modes. The capability of this method is demonstrated in the natural frequency and unbalance response analysis of the steam turbine-generator rotor system in which the dynamics of the pedestal is considered. The results by the present method are compared with finite element method and trnasfer matrix method in terms of the accuracy and computing time.

  • PDF