• Title/Summary/Keyword: Mode of failure

Search Result 2,217, Processing Time 0.024 seconds

Behavior of Reinforced Concrete Inclined Column-Beam Joints (철근콘크리트 경사기둥-보 접합부의 거동)

  • Kwon, Goo-Jung;Park, Jong-Wook;Yoon, Seok-Gwang;Kim, Tae-Jin;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.147-156
    • /
    • 2012
  • In recent years, many high-rise buildings have been constructed in irregular structural system with inclined columns, which may have effect on the structural behavior of beam-column joints. Since the external load leads to shear and flexural forces on the inclined columns in different way from those on the conventional vertical columns, failure mode, resistant strength, and ductility capacity of the inclined column-beam joints may be different than those of the perpendicular beam-column joints. In this study, six RC inclined beam-column joint specimens were tested. The main parameter of the specimens was the angle between axes of the column and beam (90, 67.5, and 45 degree). Test results indicated that the structural behavior of conventional perpendicular beam-column joint was different to that of the inclined beam-column joints, due to different loading conditions between inclined and perpendicular beam-column joints. Both upper and lower columns of perpendicular beam-column joints were subjected to compressive force, while the upper and lower columns of the inclined beam-column joints were subjected to tensile and compressive forces, respectively.

A Study on Improvement of Seismic Performance of High Strength Reinforced Concrete Interior Beam-Column Joints using High Ductile Fiber-Reinforced Mortar (고인성섬유 복합모르타르를 활용한 고강도 철근콘크리트 내부 보-기둥 접합부의 내진성능 개선 연구)

  • Ha, Gee-Joo;Hong, Kun-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.753-760
    • /
    • 2012
  • In this study, experimental research was carried out to evaluate and improve the constructability and seismic performance of high strength R/C interior beam-column joints regions, with or without the shear reinforcement, using high ductile fiber-reinforced mortar. Six specimens of retrofitted the beam-column joint regions using high ductile fiber-reinforced mortar are constructed and tested for their retrofit performances. Specimens designed by retrofitting the interior beam-column joint regions (IJNS series) of existing reinforced concrete building showed a stable mode of failure and an increase in load-carrying capacity due to the enhancement of crack dispersion by fiber bridging from using new high ductile materials for retrofitting. Specimens of IJNS series, designed by the retrofitting of high ductile fiber-reinforced mortar in beam-column joint regions increased its maximum load carrying capacity by 96~102.8% and its energy dissipation capacity by 0.99~1.11 folds when compared to standard specimen of SIJC with a displacement ductility of 5.

Electrical Behavior of the Circuit Screen-printed on Polyimide Substrate with Infrared Radiation Sintering Energy Source (열소결로 제작된 유연기판 인쇄회로의 전기적 거동)

  • Kim, Sang-Woo;Gam, Dong-Gun;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.71-76
    • /
    • 2017
  • The electrical behavior and flexibility of the screen printed Ag circuits were investigated with infrared radiation sintering times and sintering temperatures. Electrical resistivity and radio frequency characteristics were evaluated by using the 4 point probe measurement and the network analyzer by using cascade's probe system, respectively. Electrical resistivity and radio frequency characteristics means that the direct current resistance and signal transmission properties of the printed Ag circuit. Flexibility of the screen printed Ag circuit was evaluated by measuring of electrical behavior during IPC sliding test. Failure mode of the Ag printed circuits was observed by using field emission scanning electron microscope and optical microscope. Electrical resistivity of the Ag circuits screen printed on Pl substrate was rapidly decreased with increasing sintering temperature and durations. The lowest electrical resistivity of Ag printed circuit was up to $3.8{\mu}{\Omega}{\cdot}cm$ at $250^{\circ}C$ for 45 min. The crack length arisen within the printed Ag circuit after $10{\times}10^4$ sliding numbers was 10 times longer than that of after $2.5{\times}10^4$ sliding numbers. Measured insertion loss and calculated insertion loss were in good agreements each other. Insertion loss of the printed Ag circuit was increased with increasing the number of sliding cycle.

Evaluation of Beam Behavior with External Bonded L-type GFRP Plate through bending Test (L형 GFRP 외부부착 보강된 보의 휨 실험을 통한 보강 거동분석)

  • Jeong, Yeong-Seok;Kwon, Min-Ho;Kim, Jin-Sup;Nam, Gwang-sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.86-93
    • /
    • 2020
  • The demand for maintenance in Korea infrastructure facilities constructed since the 1970s has increased significantly compared to the demand for new construction. Moreover, after the Gyeongju and Pohang earthquakes, seismic performance evaluation, repair, and retrofitting projects have been carried out. Therefore, in this study, a specimen was designed following the L-type GFRP Plate Externally Bonded Retrofit method, one among other retrofit methods. The L-type GFRP Plate was bonded to the specimen by epoxy and a washered steel nail. A four-point bending test was performed to confirm the strengthening effect of the Externally Bonded Retrofit method using an L-type GFRP Plate. The strengthening effect of the L-type GFRP plate was proven experimentally, and the behavior of the beam designed following the L-type GFRP Plate Externally Bonded Retrofit method was evaluated according to Korea's "Design Manual & Specification for Strengthening of RC Structures by Advanced Composites System". Furthermore, the effectiveness of the bonding method, a combination of epoxy and washered steel nail, was also checked. The results showed that the design, according to the guidelines mentioned above, predicted the strength of the member well, but the failure mode did not satisfy the design assumption because of unexpected damage to the GFRP plate due to the fixing method, washered steel nail.

Experimental Verification of Flexural Response for Strengthened R/C Beams by Stirrup Partial-Cutting Near Surface Mounted Using CFRP Plate (CFRP 플레이트 적용 스터럽 부분절단형 표면매립공법으로 보강된 철근콘크리트 보의 휨 거동에 대한 실험적 평가)

  • Oh, Hong-Seob;Sim, Jong-Sung;Ju, Min-Kwan;Lee, Gi-Hong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.671-679
    • /
    • 2008
  • The near surface mounted (NSM) FRP strengthening method has been conventionally applied for strengthening the deteriorated concrete structures. The NSM strengthening method, however, has been issued with the problem of limitation of the cutting depth which is usually considered as concrete cover depth. This may be related with degradation of bonding performance in long-term service state. To improve the debonding problem, in this study, the Stirrup partial-cutting NSM (SCNSM) strengthening method using CFRP plate was newly developed. SCNSM strengthening method can be effectively applied to the deteriorated concrete structure without any troubles of insufficient cutting depth. To experimentally verify the structural behavior, the flexural test of the concrete beam by using the SCNSM strengthening method was conducted with the test variable as the strengthening length (32%, 48%, 70%, 80%, 96% of span length). In the result of the test, the NSM and SCNSM strengthened specimen showed similar structural behavior with load-deflection, mode of failure. Additionally, there was no apparent structural degradation by the stirrup partial-cutting. Consequently, it was evaluated that the SCNSM strengthening method can be useful for seriously damaged concrete structures that is hard to apply the conventional NSM strengthening method for increasing the structural capacity.

Experimental Study on Blast Resistance Improvement of RC Panels by FRP Retrofitting (철근콘크리트 패널의 FRP 보강에 의한 방폭 성능 향상에 관한 실험 연구)

  • Ha, Ju-Hyung;Yi, Na-Hyun;Kim, Sung-Bae;Choi, Jong-Kwon;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.93-102
    • /
    • 2010
  • Recently, FRP usage for strengthening RC structures in civil engineering has been increasing. Especially, the use of FRP to strengthen structures against blast loading is growing rapidly. To estimate FRP retrofitting effect under blast loading, blast tests with nine $1,000{\times}1,000{\times}150\;mm$ RC panel specimens, which were retrofitted with carbon fiber reinforced polymer (CFRP), Polyurea, CFRP with Poly-urea and basalt fiber reinforced polymer (BFRP) have been carried out. The applied blast load was generated by the detonation of 15.88 kg ANFO explosive charge at 1.5 m standoff distance. The data acquisitions not only included blast waves of incident pressure, reflected pressure, and impulse, but also included central deflection and strains at steel, concrete, and FRP surfaces. The failure mode of each specimen was observed and compared with a control specimen. From the test results, the blast resistance of each retrofit material was determined. The test results of each retrofit material will provide the basic information for preliminary selection of retrofit material to achieve the target retrofit performance and protection level.

The effect of Zirconium Nitride coating on shear bond strength with denture base resin in Co-Cr alloy and titanium alloy (질화 지르코늄 코팅이 코발트 크롬 합금과 타이타늄 합금에서 의치상 레진과의 전단결합강도에 미치는 영향)

  • Park, Chan;Lee, Kyoung-Hun;Lim, Hyun-Pil
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.194-201
    • /
    • 2016
  • Purpose: The purpose of this study was to evaluate of Zirconium Nitride (ZrN) coating on shear bond strength with denture base resin in Co-Cr and Ti-6Al-4V alloy. Materials and Methods: Co-Cr and Ti-6Al-4V alloy disks (10 mm in diameter, 2.5 mm in thickness; each other: n = 14) were prepared and divided with 2 groups each other by ZrN coating. After primer was applied to disks surface, denture base resin with diameter 6 mm, height 5 mm was bonded on metal disk surface. After surface roughness was measured by Profiler, shear bond strength was determined with Universal testing machine and analyzed with two-way ANOVA. The specimen surfaces and failure mode were examined using a scanning electron microscope. Results: ZrN coated groups showed significantly higher rough surface than non-coated groups (P < 0.05). Irrespective of alloy materials, shear bond strength of ZrN coated groups were lower than non-coated groups (P < 0.001). The scanning electron microscope (SEM) of ZrN coated groups showed mixed and adhesive fractures. Conclusion: ZrN coating weakened bonding strength between denture base resin and Co-Cr, Ti-6Al-4V alloy.

Behavior of Reinforcement Ratio on Concrete Beams Reinforced with Lab Spliced GFRP Bar (GFRP 보강근으로 겹이음된 콘크리트 보의 보강비에 따른 거동특성)

  • Choi, Yun Cheul;Park, Keum Sung;Choi, Hyun Ki;Choi, Chang Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.67-76
    • /
    • 2011
  • The use of glass-fiber-reinforced polymer (GFRP) bars in reinforced concrete (RC) structures has emerged as an alternative to traditional RC due to the corrosion of steel in aggressive environments. Although the number of analytical and experimental studies on RC beams with GFRP reinforcement has increased in recent decades, it is still lower than the number of such studies related to steel RC structures. This paper presents the experimental moment deflection relations of GFRP reinforced beam which are spliced. Test variables were different reinforcement ratio and cover thickness of GFRP rebars. Seven concrete beams reinforced with steel GFRP re-Bars were tested. All the specimens had a span of 4000mm, provided with 12.7mm nominal diameter steel and GFRP rebars. All test specimens were tested under 2-point loads so that the spliced region be subject to constant moment. The experimental results show that the ultimate moment capacity of beam increasing of the reinforcement ratio. Failure mode of these specimens was sensitively vary according to the reinforcement ratio. The change of beam effective depth, which was caused by cover thickness variation, controlled the maximum strength and deflection because of cover spalling in tension face.

Teaching Methodology for Future Mathematics Classroom:Focusing on Students' Generative Question in Ill-Structured Problem (미래학교 수학교실의 교육 방법론에 대한 탐색:비구조화된 문제에서 학생들의 질문 만들기를 중심으로)

  • Na, Miyeong;Cho, Hyungmi;Kwon, Oh Nam
    • The Mathematical Education
    • /
    • v.56 no.3
    • /
    • pp.301-318
    • /
    • 2017
  • This paper explores students' question generation process and their study in small group discussion. The research is based on Anthropological Theory of the Didactic developed by Chevallard. He argues that the savior (knowledge) we are dealing with at school is based on a paradigm that we prevail over whether we 'learn' or 'study' socially. In other words, we haven't provided students with autonomous research and learning opportunities under 'the dominant paradigm of visiting works'. As an alternative, he suggests that we should move on to a new didactic paradigm for 'questioning the world a question', and proposes the Study and Research Courses (SRC) as its pedagogical structure. This study explores the SRC structure of small group activities in solving ill-structured problems. In order to explore the SRC structure generated in the small group discussion, one middle school teacher and 7 middle school students participated in this study. The students were divided into two groups with 4 students and 3 students. The teacher conducted the lesson with ill-structured problems provided by researchers. We collected students' presentation materials and classroom video records, and then analyzed based on SRC structure. As a result, we have identified that students were able to focus on the valuable information they needed to explore. We found that the nature of the questions generated by students focused on details more than the whole of the problem. In the SRC course, we also found pattern of a small group discussion. In other words, they generated questions relatively personally, but sought answer cooperatively. This study identified the possibility of SRC as a tool to provide a holistic learning mode of small group discussions in small class, which bring about future mathematics classrooms. This study is meaningful to investigate how students develop their own mathematical inquiry process through self-directed learning, learner-specific curriculum are emphasized and the paradigm shift is required.

A Study on the Structural Behavior and the Strength of Circular Hollow Steel(CHS) Section Columns (원형강관 기둥의 구조적인 거동 및 강도에 관한 연구)

  • Kang, Doo Won;Kwon, Young Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.505-514
    • /
    • 2009
  • This paper describes the structural behavior and the ultimate strengths of circular hollow steel (CHS) sections based on a series of compression tests. The ultimate strengths of CHS section columns are mainly dependent on both diameter-thickness ratio and column slenderness ratio. For the CHS sections with a high diameter-thickness ratio, an elastic or an inelastic local buckling may occur prior to the overall buckling, and it may decrease the column strength. Test sections were fabricated from SM400 steel plate of 2.8 mm and 3.2 mm in thickness and were tested to failure. The diameter-thickness ratios of the test sections ranged from 45 to 170 to investigate the effect of local buckling on the column strength. The compression tests indicated that the CHS sections of lower diameter-thickness ratio than the yield limit in the current design specifications showed an inelastic local buckling and a significant post-buckling strength in the local mode. Their ultimate stresses were larger than the nominal yield stress. It was known that the allowable stresses of the sections predicted by the Korean Highway Bridge Design Specifications (2005) were too conservative in comparison with test results. The Direct Strength Method which was newly developed was calibrated for application to the CHS sections by the experimental and numerical results. The Direct Strength Method proposed can predict properly the ultimate strength of CHS section columns whether a local buckling and an overall buckling occur nearly simultaneously or not.