• Title/Summary/Keyword: Mode of failure

Search Result 2,218, Processing Time 0.027 seconds

Mechanical Properties of Carbon/Phenolic Ablative Composites (Carbon/Phenolic 내열 복합재료의 기계적 특성)

  • Kim, P.W.;Hong, S.H.;Kim, Y.C.;Yeh, B.H.;Jung, B.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.160-163
    • /
    • 1999
  • The mechanical properties and failure behaviour of carbon/phenolic composites were inverstigated by tension and compression. Carbon/phenolic composites were fabricated by infiltration of matrix into 8 harness satin woven fabric of PAN-based carbon fibers. The tensile and compressive tests were performed at 25℃ under air atmosphere and, at 400℃ and 700℃ under N₂ atmosphere. The tensile strengths of carbon/phenolic composites in with-laminar/0° warp direction were about 10 times higher than those in with-laminar/45° warp direction, which was analyzed due to a change of fracture mode from fiber pull-out by shear to tensile fracture of fibers. The fracture of carbon/phenolic composites in with-laminar/45° direction was analyzed due to delamination by buckling. Tensile and compressive strength of carbon/phenolic composites decreased to about 50% at 400℃, and to about 10% at 700℃ compared to that at room temperature. The main reason for the decrease of tensile or compressive strength with increasing temperature was analyzed due to a reduction of bond strength between fibers and matrix resulting from thermal degradation of phenolic resin.

  • PDF

Experimental Study of Flexural Behavior of Steel Beam Strengthened with the Fiber Reinforced Polymer Plastic(FRP) Strips (섬유보강플라스틱(FRP) 스트립으로 보강한 철골보의 휨거동에 관한 실험적연구)

  • Choi, Sung Mo;Park, Jai Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.69-79
    • /
    • 2014
  • This paper presents the experimental results of flexural behavior of steel beam strengthened with fiber reinforced polymer plastic (FRP) strips subjected to static bending loading. Four H beams were fabricated strengthened with aramid strips and carbon strips and one control specimen were also fabricated. Among them two specimens were strengthened with partial length. The H-beams had two types of failure mode, depending on the length of the FRP strips:(1) strip debonding in beams with partial length reinforcement and (2) strip rupture in beams with full length reinforcement. From the test, it was observed that maximum increase of 16% was also achieved in bending-load capacity.

Evaluation of the Impact Shear Strength of Thermal Aged Lead-Free Solder Ball Joints (열시효 처리된 무연 솔더 볼 연결부의 충격 전단강도 평가)

  • Chung, Chin Sung;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.7-11
    • /
    • 2015
  • The present study investigates the impact shear strength of thermal aged Sn-3Ag-0.5Cu lead-free solder joints at impact speeds ranging from 0.5 m/s to 2.5 m/s. The specimens were thermal aged for 24, 100, 250 and 1000 hours at $100^{\circ}C$. The experimental results demonstrate that the shear strength of the solder joint decreases with an increase in the load speed and aging time. The shear strength of the solder joint aged averagely decreased by 43% with an increase in the strain rate. For the as-reflowed specimens, the mode II stress intensity factor ($K_{II}$) of interfacial IMC between Sn-3.0Ag-0.5Cu and a copper substrate also was found to decrease from $1.63MPa.m^{0.5}$ to $0.97MPa.m^{0.5}$ in the speed range tested here. The degradations in the shear strength and fracture toughness of the aged solder joints are mainly caused by the growth of IMC layers at the solder/substrate interface.

A Study on the Flexural and Shear Behavior of Repaired and Rehabilitated RC Beams (보수$\cdot$보강된 철근콘크리트 보의 휨 및 전단 거동에 관한 연구)

  • 김태봉;이재범;류택은
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.129-140
    • /
    • 1999
  • This study presents test results of RC beams strengthened by steel plates, carbon fiber sheets(CFS) and aramid fiber sheets(AFS) for increasing flexural and shear resistance. The test was performed with different parameters including the type of strengthening materials, flexural-strengthening methods and shear-strengthening methods. In case of flexural test, RC beams are initially loaded to 70% of the ultimate flexural capacity and in case of shear test loaded to 60 or 80 percent of the ultimate shear capacity and subsequently reinforced with steel plates, CFS and AFS. Experimental data on strength, steel strain, deflection, and mode of failure of the reinforced beams were obtained, and comparisons between the different shear reinforced schemes and the non-strengthened control beams were made. The test results showed that damaged RC beams strengthened by steel plates, CFS and AFS have more improved the flexural and shear capacity. For the beams with external reinforcement by steel plates, aramid fiber sheets and carbon fiber sheets increases in ultimate strength of 4 to 21, 17 to 43 and 26 to 36 percent were respectively achieved. Initial load had small effect on strength after reinforcement, but an important influence on deflection. One sheet reinforced was stronger than two sheets reinforced but less deflected than two sheets reinforced.

  • PDF

Effect of Subsequent Annealing Temperature on Dynamic Deformation and Fracture Behavior of Submicrocrystalline Al-4.4%Mg Alloy via Equal-Channel Angular Pressing (ECAP 가공된 초미세 결정립 Al-4.4%Mg 합금의 동적 변형 및 파괴거동에 미치는 후-열처리 온도의 영향)

  • Kim, Y.G.;Ko, Y.G.;Shin, D.H.;Lee, C.S.;Lee, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.427-430
    • /
    • 2008
  • The influence of subsequent annealing treatment on the dynamic deformation and the fracture behavior of submicrocrystalline Al-4.4%Mg alloy is investigated in this study. After inducing an effective strain of 8 via equal-channel angular pressing at $200^{\circ}C$, most of the grains are considerably reduced to nearly equiaxed grains of $0.3{\mu}m$ in size. With an increment of various subsequent heat treatments for 1 hour, resultant microstructures are found to be fairly stable at temperatures up to $200^{\circ}C$, suggesting that static recovery will be dominantly operative, whereas grain growth is pronounced above $250^{\circ}C$. The results of tensile tests show that yield and ultimate tensile strength decrease, but elongation-to-failure and strain hardening rate increase with an increase in annealing temperatures. The dynamic deformation and the fracture behavior retrieved with a series of torsional tests are explored with respect to annealed microstructures. Such mechanical response is analyzed in relation to resultant microstructure and fracture mode.

  • PDF

Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study

  • Tahar, Hassaine Daouadji;Boussad, Abbes;Abderezak, Rabahi;Rabia, Benferhat;Fazilay, Abbes;Belkacem, Adim
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.409-420
    • /
    • 2019
  • The paper presents the results of an experimental and numerical programme to characterize the behaviour of steel beams reinforcement by composite plates. Important failure mode of such plated beams is the debonding of the composite plates from the steel beam due to high level of stress concentration in the adhesive at the ends of the composite plate. In this new research, an experimental and numerical finite element study is presented to calculate the stresses in the sika carbodur and sika wrap reinforced steel beam under mechanical loading. The main objective of the experimental program was the evaluation of the force transfer mechanism, the increase of the load capacity of the steel beam and the flexural stiffness. It also validated different analytical and numerical models for the analysis of sika carbodur and sika wrap reinforced steel beams. In particular, a finite element model validated with respect to the experimental data and in relation to the analytical approach is presented. Experimental and numerical results from the present analysis are presented in order to show the advantages of the present solution over existing ones and to reconcile debonding stresses with strengthening quality.

Fatigue Safety Evaluation of the Half-Depth Precast Deck with RC Rib Panel (리브 형상을 갖는 반단면 프리캐스트 바닥판의 피로 안전성 평가)

  • Hwang, Hoon Hee
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.103-110
    • /
    • 2019
  • In order to reduce the accidents occurring at construction sites, it is necessary to approach with harmonious measures considering various aspects such as systems, training, facilities, and protection equipments. Suggestion of safe construction method can be a good alternative. In the previous study, the half-depth precast deck with RC rib panel was proposed as an alternative method for safe bridge deck construction, and the performance required by the design code was verified through a four-point bending test. But the actual bridge deck is subjected to the repetitive action of the wheel load rather than the bending condition due to the four-point load. In this study, fatigue test was performed by repeating the wheel load $2{\times}10^6$ cycles to verify the safety of the half-depth precast deck with RC rib panel under actual conditions. As a result, fatigue effect due to repetition of wheel load was not significant in terms of serviceability such as crack width and deflection. In the residual strength test conducted after the fatigue test, the half-depth precast deck with RC rib panel failed by punching shear which is typical failure mode of bridge decks and the residual strength was similar to the punching strength of the RC and PSC bridge decks in spite of the fatigue effects.

Investigation of bond-slip modeling methods used in FE analysis of RC members

  • Demir, Serhat;Husem, Metin
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.275-291
    • /
    • 2015
  • Adherence between reinforcement and the surrounding concrete is usually ignored in finite element analysis (FEA) of reinforced concrete (RC) members. However, load transition between the reinforcement and surrounding concrete effects RC members' behavior a great deal. In this study, the effects of bond-slip on the FEA of RC members are examined. In the analyses, three types of bond-slip modeling methods (perfect bond, contact elements and spring elements) and three types of reinforcement modeling methods (smeared, one dimensional line and three dimensional solid elements) were used. Bond-slip behavior between the reinforcement and surrounding concrete was simulated with cohesive zone materials (CZM) for the first time. The bond-slip relationship was identified experimentally using a beam bending test as suggested by RILEM. The results obtained from FEA were compared with the results of four RC beams that were tested experimentally. Results showed that, in FE analyses, because of the perfect bond occurrence between the reinforcement and surrounding concrete, unrealistic strains occurred in the longitudinal reinforcement. This situation greatly affected the load deflection relationship because the longitudinal reinforcements dominated the failure mode. In addition to the spring elements, the combination of a bonded contact option with CZM also gave closer results to the experimental models. However, modeling of the bond-slip relationship with a contact element was quite difficult and time consuming. Therefore bond-slip modeling is more suitable with spring elements.

Experimental investigation of thin steel plate shear walls with different infill-to-boundary frame connections

  • Vatansever, Cuneyt;Yardimci, Nesrin
    • Steel and Composite Structures
    • /
    • v.11 no.3
    • /
    • pp.251-271
    • /
    • 2011
  • To make direct comparisons regarding the cyclic behavior of thin steel plate shear walls (TSPSWs) with different infill-to-boundary frame connections, two TSPSWs were tested under quasi-static conditions, one having the infill plate attached to the boundary frame members on all edges and the other having the infill plate connected only to the beams. Also, the bare frame that was used in the TSPSW specimens was tested to provide data for the calibration of numerical models. The connection of infill plates to surrounding frames was achieved through the use of self-drilling screws to fish plates that were welded to the frame members. The behavior of TSPSW specimens are compared and discussed with emphasis on the characteristics important in seismic response, including the initial stiffness, ultimate strength and deformation modes observed during the tests. It is shown that TSPSW specimens achieve significant ductility and energy dissipation while the ultimate failure mode resulted from infill plate fracture at the net section of the infill plate-to-boundary frame connection after substantial infill plate yielding. Experimental results are compared to monotonic pushover predictions from computer analysis using strip models and the models are found to be capable of approximating the monotonic behavior of the TSPSW specimens.

Experimental study on concrete-encased composite columns with separate steel sections

  • Xiao, Congzhen;Deng, Fei;Chen, Tao;Zhao, Zuozhou
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.483-491
    • /
    • 2017
  • This paper presents an experimental study on the behavior of concrete-encased composite columns with multiseparate steel sections subjected to axial and eccentric loads. Six 1/4-scaled concrete-encased composite columns were tested under static loads. The specimens were identical in geometric dimensions and configurations, and the parameter of this experiment was the eccentricity ratio of the applied load. Each two of the specimens were loaded with 0, 10%, and 15% eccentricity ratios. The capacity, deformation pattern, and failure mode of the specimens were carefully examined. Test results indicate that full composite action between the concrete and the steel sections can be realized even though the steel sections do not connect with one another. The concrete-encased composite columns can develop stable behavior and sufficient deformation capacity by providing enough transverse reinforcing bars. Capacities of the specimens were evaluated based on both the Plain Section Assumption (PSA) method and the superimposition method. Results show that U.S. and Chinese codes can be accurate and safe in terms of bending capacities. Test results also indicate that the ACI 318 and Mirza methods give the best predictions on the flexural stiffness of this kind of composite columns.