• Title/Summary/Keyword: Mode of action

Search Result 657, Processing Time 0.024 seconds

$^{1}H-NMR$ Spectroscopic Evidence on the Glycosidic Linkages of the Transglycosylated Products of Low-Molecular-weight 1,4-$\beta$-D-Glucan Glucanohydrolase from Trichoderma koningii (Trichoderma koningii에서 분리한 저분자 1, 4-$\beta$-D-Glucan Glucanohydrolase의 반응산물에 대한 핵자기공명 스펙트럼 분석)

  • 맹필재;강사욱;정춘수;홍순우;하영칠;이영하;김재헌
    • Korean Journal of Microbiology
    • /
    • v.25 no.4
    • /
    • pp.304-308
    • /
    • 1987
  • The mode of transglycosylation reaction observed during the action of low-molecular-weight 1,4-$\beta$-D-glucan glucanohydrolase (EC 3.2.1.4) purified from Trichoderma koningii ATCC 26113 was investigated using $^{1}H-NMR $spectroscopy. The H-1 proton resonances were analysed. After reaction of the enzyme with cellotriose, the reaction products were separated by high performance liquid chromatography. H-1 resonances of the products were consisted with those of cellobiose, cellotriose and cellotitraose, respectively. Therefore it was proved that all the reaction products formed by the action of the enzyme on cellooligosaccharides, including transglycosylation products, possess only H-NMR -1,4-glycosidic linkage(s).

  • PDF

Moce of Action of the Purified Cell Wall Lytic Enzyme from Bacillus sp. (Bacillus sp.로부터 분리 정제한 Cell Wall 분해효소의 반응특성)

  • Kim, Tae-Ho;Shin, Woo-Chang;Lee, Dong-Sun;Hong, Soon-Duck
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.671-677
    • /
    • 1995
  • An extracellular enzyme showing lytic activity on E. coli peptidoglycan had been isolated from Bacillus sp. BL-29. The lytic enzyme was purified to homogeneity by ion-exchange chromatography and gel filtration, with a recovery of 5%. The enzyme was monomeric and had an estimated molecular weight of 31,000 Da. The mode of action of the purified enzyme was also investigated. When the purified lytic enzyme was incubated with cell wall peptidoglycan, N-terminal amino groups were released without the release of reducing groups. The N-terminal amino acid released was identified as dinitrophenylalanine (DNP-alanine) by analysis of terminal amino acid by dinitrophenylation method. This result suggests that the lytic enzyme should be a kind of N-acetylmura-myl-L-alanine amidase.

  • PDF

A Study on Developement of Optimization Model for Single Action Tidal Power Station (단류식 창조발전의 조력발전소 최적화 운영 Model 개발에 관한 연구)

  • Kim, Hyun-Han;Kim, Man-Kie;Kim, June-Kyou;Ok, Yeon-Ho;Kim, Kwang-Ho;Jeong, Jong-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1144_1145
    • /
    • 2009
  • Tidal power station is using the difference of the ebb and flow and the single action tidal power is dependent on tide amplitude and basin volume. Therefore the inflow of basin in rainy season has also effect on the daily power. Also if operating units are changed then starting head too changed. Therefore the number of units are very important for the optimization model. According to our study the primary point when we make a determination of optimization is starting head and governorl control mode. On this study optimization model for tidal power station is considered all of this conditions.

  • PDF

Antagonistic Mode of Action of Fenoxaprop-P-ethyl Phytotoxicity with Bentazon (Fenoxaprop-P-ethyl의 제초활성에 대한 Bentazon의 길항작용기구)

  • Ma, S.Y.;Kim, S.W.;Chun, J.C.
    • Korean Journal of Weed Science
    • /
    • v.18 no.2
    • /
    • pp.161-170
    • /
    • 1998
  • Antagonistic mode of action of fenoxaprop-P-ethyl [ethyl(R)2-4-{(6-chloro-2-benzoxazolyloxy) phenoxy}propionate] with bentazon was investigated with respect to absorption, translocation, metabolism, and change in target site response of fenoxaprop-P-ethyl using four-leaf stage of rice(Oryza sativa L.) and barnyardgrass [Echinochloa eras-galli (L.) P. Beauv.]. Shoots of rice and barnyardgrass was more sensitive to fenoxaprop-P-ethyl than the roots. More than 90% of fenoxaprop-P-ethyl was absorbed within 6 hours after treatment and 30% of the absorbed was acropetally and basipetally translocated at 24 hours after treatment. Fenoxaprop-P-ethyl was rapidly transformed to its acid form, fenoxaprop(2-[4-(6-chloro-2-benzoxazolyloxy)phenoxy]propionic acid), which was subsequently metabolized to polar conjugates. However, changes in absorption, translocation, and metabolism of fenoxaprop-P-ethyl by bentazon treatment were not found in both species. Background activity of acetyl-CoA carboxylase(ACCase) in rice and barnyardgrass was 26.5 and 23.2nmol/min/mg, respectively. Concentration required to inhibit fifty percent enzyme activity$(I_{50})$ in vitro was 6.5~7.4${\mu}M$ of fenoxaprop-P-ethyl and more than 500${\mu}M$ of bentazon. There were no significant differences in $I_{50}$ value between two treatments of fenoxaprop-P-ethyl alone and its bentazon mixture. However, bentazon reduced ACCase activity in vivo and inhibited electron transport in chloroplast thylakoid. Based on the results obtained, it is concluded that the antagonistic effect of bentazon occurs due not to direct effect on target site of fenoxaprop-P-ethyl, but to indirect involvement in reducing herbicidal activity of fenoxaprop-P-ethyl through physiological disturbances caused by bentazone at whole chloroplast level.

  • PDF

Aerostatic instability mode analysis of three-tower suspension bridges via strain energy and dynamic characteristics

  • Zhang, Wen-ming;Qian, Kai-rui;Wang, Li;Ge, Yao-jun
    • Wind and Structures
    • /
    • v.29 no.3
    • /
    • pp.163-175
    • /
    • 2019
  • Multispan suspension bridges make a good alternative to single-span ones if the crossed strait or river width exceeds 2-3 km. However, multispan three-tower suspension bridges are found to be very sensitive to the wind load due to the lack of effective longitudinal constraint at their central tower. Moreover, at certain critical wind speed values, the aerostatic instability with sharply deteriorating dynamic characteristics may occur with catastrophic consequences. An attempt of an in-depth study on the aerostatic stability mode and damage mechanism of three-tower suspension bridges is made in this paper based on the assessment of strain energy and dynamic characteristics of three particular three-tower suspension bridges in China under different wind speeds and their further integration into the aerostatic stability analysis. The results obtained on the three bridges under study strongly suggest that their aerostatic instability mode is controlled by the coupled action of the anti-symmetric torsion and vertical bending of the two main-spans' deck, together with the longitudinal bending of the towers, which can be regarded as the first-order torsion vibration mode coupled with the first-order vertical bending vibration mode. The growth rates of the torsional and vertical bending strain energy of the deck after the aerostatic instability are higher than those of the lateral bending. The bending and torsion frequencies decrease rapidly when the wind speed approaches the critical value, while the frequencies of the anti-symmetric vibration modes drop more sharply than those of the symmetric ones. The obtained dependences between the critical wind speed, strain energy, and dynamic characteristics of the bridge components under the aerostatic instability modes are considered instrumental in strength and integrity calculation of three-tower suspension bridges.

The Position Control of Induction Motor using Reaching Mode Controller and Neural Networks (리칭모드 제어기와 신경 회로망을 이용한 유도전동기의 위치제어)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.3
    • /
    • pp.72-83
    • /
    • 2000
  • This paper presents the implementation of the position control system for 3 phase induction motor using reaching mode controller and neural networks. The reaching mode controller is used to bring the position error and speed error trajectories toward the sliding surface and to train neural networks at the first time. The structure of the reaching mode controller consists of the switch function of sliding surface. And feedforward neural networks approximates the equivalent control input using the reference speed and reference position and actual speed and actual position measured form an encoder and, are tuned on-line. The reaching mode controller and neural networks are applied to the position control system for 3 phase induction motor and, are compared with a PI controller through computer simulation and experiment respectively. The results are illustrated that the output of reaching mode controller is decreased and feedforward neural networks take charge of the main part for the control action, and the proposed controllers show better performance than the PI controller in abrupt load variation and the precise control is possible because the steady state error can be minimized by training neural networks.

  • PDF

N-Acetylglycine Side Chain is Critical for the Antimicrobial Activity of Xanthostatin

  • Kim, Si-Kwan;Ubukata, Makoto;Isono, Kiyoshi
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.998-1000
    • /
    • 2003
  • This study was carried out to elucidate the mode of bacteriostatic property of xanthostatin (XS), a novel depsipeptide antibiotic with an N-acetylglycine side chain and selective antimicrobial activity against Xanthomonas spp. Two biotransformed XSs were isolated by the treatment of XS with the cell lysate of Xanthomonas campestris pv. citri, a solvent partition, preparative TLC, and HPLC. Structure determination of those two biotransformed XSs demonstrated deletion of the N-acetylglycine side chain. Noteworthily, they showed no antimicrobial activity against Xanthomonas spp. This result suggests that the N-acetylglycine side chain plays a critical role in the antimicrobial activity of XS, and that the bacteriostatic property of XS is due to susceptibility of the ester bond between the hexadepsipeptide nucleus and the N-acetylglycine side chain to hydrolytic enzyme(s) produced by Xanthomonas spp.

A two-step approach for joint damage diagnosis of framed structures using artificial neural networks

  • Qu, W.L.;Chen, W.;Xiao, Y.Q.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.581-595
    • /
    • 2003
  • Since the conventional direct approaches are hard to be applied for damage diagnosis of complex large-scale structures, a two-step approach for diagnosing the joint damage of framed structures is presented in this paper by using artificial neural networks. The first step is to judge the damaged areas of a structure, which is divided into several sub-areas, using probabilistic neural networks with natural Frequencies Shift Ratio inputs. The next step is to diagnose the exact damage locations and extents by using the Radial Basis Function (RBF) neural network with the second Element End Strain Mode of the damaged sub-area input. The results of numerical simulation show that the proposed approach could diagnose the joint damage of framed structures induced by earthquake action effectively and has reliable anti-jamming abilities.

Implementation of manual/automatic complex redundancy control method for modulation system of a paging earth station in reduntancy structure (이중화 무선호출 지구국 변조부 시스템의 수/자동 복합 이중화 제어 방법 구현)

  • 박승창;김영민
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.1
    • /
    • pp.21-29
    • /
    • 1997
  • This paper describes implementation contents contents of manual/automatic complex redundancy control mothod for control of a modulation system of a Paging earth station in redundancy stracture. The existed redundancy control method usually is a automatic local control method in which the redundancy switching, including display or alarm beeping through operation of display devices or audio devices, is performed by the co-action of components or modules when the abnormal status is occurred in a modulation system. However, this method introduced in here is designed to enable use of three control modes;1) Manual mode by an operator, 2) Auto-remote mode by the Network Maagement System, through implementation of the redundancy control system composed of the redundancy control board and the redundancy switching circuit.

  • PDF

Dynamic analysis of a magneto-electro-elastic material with a semi-infinite mode-III crack under point impact loads

  • Feng, Wenjie;Liu, Jinxi
    • Structural Engineering and Mechanics
    • /
    • v.27 no.5
    • /
    • pp.609-623
    • /
    • 2007
  • The problem of a semi-infinite magneto-electro-elastically impermeable mode-III crack in a magneto-electro-elastic material is considered under the action of impact loads. For the case when a pair of concentrated anti-plane shear impacts, electric displacement and magnetic induction impacts are exerted symmetrically on the upper and lower surfaces of the crack, the magneto-electro-elastic field ahead of the crack tip is determined in explicit form. The dynamic intensity factors and dynamic energy density factor are obtained. The method adopted is to reduce the mixed initial-boundary value problem, by using the Laplace and Fourier transforms, into three simultaneous dual integral equations, one of which is converted into an Abel's integral equation and the others into a singular integral equation with Cauchy kernel. Based on the obtained fundamental solutions of point impact loads, the solutions of two kinds of different loading cases are evaluated by integration. For some particular cases, the present results reduce to the previous results.