• 제목/요약/키워드: Mode instabilities

Search Result 79, Processing Time 0.025 seconds

Characteristics of High-Frequency Combustion Instabilities Occurring in Combustion Devices (연소장치에서 발생하는 고주파 연소 불안정 특성)

  • Seo, Seong-Hyeon
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.30-36
    • /
    • 2012
  • Dynamic characteristics of combustion occurring in various combustion devices have been extensively studied since most of high-performance combustion devices are susceptible to hazardous, unstable combustion that deteriorates combustor's lifetime. One of the most severe unstable combustion phenomena is high-frequency combustion instability in which heat release fluctuations from combustion are coupled to resonant modes of the combustor. Here in this study, characteristics of high-frequency combustion instabilities observed in three different combustion devices have been presented. Lean-premixed combustion instability occurs mainly due to equivalence ratio fluctuations which induce large heat release oscillations at lean conditions. Liquid-fueled combustion also shows high-frequency instability from energy coupling between pressure and heat release oscillations.

Transverse and Diagonal Mode Structures of Three-dimensional Detonation Wave (3차원 데토네이션 파의 수평 및 대각선 모드 파면 구조)

  • Cho Deok-Rae;Choi Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.343-346
    • /
    • 2005
  • Three dimensional structures of detonation wave propagating through a square-shaped duct were investigated using computational method and parallel processing. Inviscid fluid dynamics equations coupled with $variable-{\gamma}$ formulation and simplified one-step Arrhenius chemical reaction model were analysed by MUSCL-type TVD scheme and four stage Runge-Kutta time integration. The unsteady computational results in three dimension show the detailed mechanism of transverse mode and diagonal mode of detonation wave instabilities resulting same cell length but different cell width in smoked-foil record.

  • PDF

STUDY OF THREE-DIMENSIONAL DETONATION WAVE STRUCTURES USING PARALLEL PROCESSING (병렬 처리를 이용한 3차원 데토네이션 파 구조 해석)

  • Cho D.R.;Choi J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.151-155
    • /
    • 2005
  • Three-dimensional structures of unsteady detonation wave propagating through a square-shaped tube is studied using computational method and parallel processing. Inviscid fluid dynamics equations coupled with variable-${\gamma}$ formulation and simplified one-step Arrhenius chemical reaction model were analysed by a MUSCL-type TVD scheme and four stage Runge-Kutta time integration. Results in three dimension show the two unsteady detonation wave propagating mode, the Rectangular and diagonal mode of detonation wave instabilities. Two different modes of instability showed the same cell length but different cell width and the geometric similarities in smoked-foil record.

  • PDF

NUMERICAL STUDY OF THREE-DIMENSIONAL DETONATION WAVES USING PARALLEL PROCESSING (병렬 처리를 이용한 3차원 테토네이션 파 수치해석)

  • Cho, D.R.;Choi, J.Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.15-19
    • /
    • 2005
  • Three-dimensional structures of unsteady detonation wave propagating through a square-shaped tube is studied using computational method and parallel processing. Inviscid fluid dynamics equations coupled with variable-${\gamma}$ formulation and simplified one-step Arrhenius chemical reaction model were analysed by a MUSCL-type TVD scheme and four stage Runge-Kutta time integration. Results in three dimension show the two unsteady detonation wave propagating mode, the Rectangular and diagonal mode of detonation wave instabilities. Two different modes of instability showed the same cell length but different cell width and the geometric similarities in smoked-foil record.

  • PDF

Nanoscale Nonlinear Dynamics of Carbon Nanotube Probe Tips (탄소나노튜브 탐침의 나노 비선형 동역학)

  • 이수일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.83-86
    • /
    • 2004
  • Carbon nanotube (CNT) tips in tapping mode atomic force microscopy (AFM) enable very high-resolution imaging, measurements, and manipulation at the nanoscale. We present recent results based on experimental analysis that yield new insights into the dynamics of CNT probe tips in tapping mode AFM. Experimental measurements are presented of the frequency response and dynamic amplitude-distance data of a high-aspect-ratio multi-walled (MW) CNT tip to demonstrate the non-linear features including tip amplitude saturation preceding the dynamic buckling of the MWCNT. Surface scanning is performed using a MWCNT tip on a SiO$_2$ grating to verify the imaging instabilities associated with MWCNT buckling when used with normal control schemes in the tapping mode. Lastly, the choice of optimal setpoints for tapping mode control using CNT probe tip are discussed using the experimental results.

  • PDF

Applications of the improved Hilbert-Huang transform method to the detection of thermo-acoustic instabilities (열음향학적 불안정성 검출에 대한 개선된 힐버트-후앙 변환의 적용)

  • Cha, Ji-Hyeong;Kim, Young-Seok;Ko, Sang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.555-561
    • /
    • 2012
  • The Hilbert Huang Transform (HHT) technigue with Empirical Mode Decomposition (EMD) is one of the time-frequency domain analysis methods and it has several advantages such that analyzing non-stationary and nonlinear signal is possible. However, there are shortcomings in detecting near-range of frequencies and added noise signals. In this paper, to analyze characteristics of each method, HHT and Short-Time Fourier Transform (STFT) effective in dealing with stationary signals are compared. And with thermoacoustic instabilities signals from a Rijke tube test, HHT and the improved HHT with Ensemble Empirical Mode Decomposition (EEMD) are compared. The results show that the improved HHT is more appropriate than the original HHT due to the relative insensitivity to noise. Therefore it will result in more accurate analysis.

  • PDF

Three-Dimensional Numerical Analysis of Spinning Detonation Wave (Spinning Detonation 파의 3차원 수치 해석)

  • Cho, Deok-Rae;Choi, Jeong-Yeol;Won, Su-Hee
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.205-212
    • /
    • 2006
  • Three-dimensional numerical study was carried out for the investigation of the detonation wave structures propagating in tubes. Fluid dynamics equations and conservation equation of reaction progress variable were analyzed by a MUSCL-type TVD scheme and four stage Runge-Kutta time integration. Chemical reaction was modeled by using a simplified one-step irreversible kinetics model. The variable gas properties between unburned and burned states were considered by using variable specific heat ratio formulation. The unsteady computational results in three-dimension show the detailed mechanisms of rectangular and diagonal mode of detonation wave instabilities resulting same cell length but different cell width in smoked-foil record. The results for the small reaction constant shows the spinning mode of three-dimensional detonation wave dynamics, which was rarely observed in the previous numerical simulation of the detonation waves.

  • PDF

A Study on Unsteady Responses of Flames - Calculation of Flame Transfer Function in a Subscale Combustor (화염의 비정상 응답 특성 연구-화염 전달 함수 산출)

  • Sohn, Chae Hoon;Guillaume, Jourdain;Kim, Young Jun
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.107-108
    • /
    • 2015
  • The acoustic optimization of a swirl coaxial jet injector mounted upstream a combustion chamber is investigated to tackle combustion instabilities. The least damped modes are extracted with the help of the dynamic mode decomposition (DMD). The sensitivity of the heat release perturbation to the velocity perturbation for the second longitudinal mode is investigated by combining the Crocco's equation and the inhomogeneous wave equation and computing the flame transfer function (FTF). DMD and FTF results agree in terms of the optimized injector length.

  • PDF

Hybrid Rocket Instability II (하이브리드 로켓 불안정성 II)

  • Lee, Jung-Pyo;Rhee, Sun-Jae;Kim, Young-Nam;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Gon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.86-90
    • /
    • 2012
  • In this paper, the combustion instabilities which may occur in the hybrid rocket were studied. The rocket combustor where the vortexes can be generated was designed, and the experiments were performed. The investigations about characteristics on the presence of the diaphragm, the length of the fuel, the diameter of the fuel port, the diameter of the diaphragm, the diameter of the nozzle throat, and the variation of the Ox massflow rate were conducted. The main resonant frequency of the combustion pressure is regarded by the Vortex shedding mode, and it is considered that the other resonant frequency of the pressure fluctuation is hybrid low frequency, or helmholtz mode.

  • PDF

Analysis of Liquid-Propellant Rocket Engine(KL-3) Unstable Combustion Characteristics of Vertical Installation (수직장착에서의 액체추진제 로켓엔진(KL-3) 불안정 연소특성에 관한 연구)

  • 하성업;권오성;이정호;김병훈;한상엽;김영목
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.18-27
    • /
    • 2003
  • To perform combined tests with propellant feeding system and engine, which were developed for KSR-III launcher, vertical test stand was organized and a series of hot-fire combustion tests were carried out with engines of several injector faceplate types. In hot-fire tests in vertical installation, combustion instabilities occurred right after ignition with an engine without baffle, and such combustion instabilities did not occur at ignition add during mainstage operation for an engine with STS or composite baffle. 1.regular and temporary pressure pulsations(popping) were detected during steady operation with a baffle engine, however a development to combustion instabilities with resonant mode was highly suppressed by baffle. With a series of tests, it was confirmed that the last developed engine, which has composite baffle, was operated successfully in KSR-III flight propulsion system.