• 제목/요약/키워드: Mode II fracture toughness

검색결과 56건 처리시간 0.024초

접착이음의 계면균열에 대한 파괴인성 및 평가방법 (Mehods of Fracture Toughness and Evaluation for Interface Crack in Adhesively Bonded Joints)

  • 정남용
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.220-226
    • /
    • 1998
  • In this pater, a method of strength evaluation applying fracture mechanics in adhesively bonded joints of A1/A1 materials was investigated. Various adhesively bonded joints of double-cantilever beam with a interfacial crack in its adhesive layer were prepared for the fracture toughness test of comprehensive mixed mode conditions from nearly pure mode I to mode II. The experiment of fracture toughness was carried out under various mixed mode conditions with an interfacial crack and critical energy release rate, Gc by the experimental measurements of compliances was determined. From the results, fracture toughness on mixed mode with an interfacial crack is well characterized by strain energy release rate and a method of strength evaluation by the fracture toughness in adhesively bonded joints of A1/A1 materials was discussed.

  • PDF

단층 그래핀시트의 모드 II 및 혼합모드 파괴 (Mode II and Mixed Mode Fracture of Single Layer Graphene Sheet)

  • 웬민키;염영진
    • 대한기계학회논문집A
    • /
    • 제38권2호
    • /
    • pp.105-113
    • /
    • 2014
  • 중앙에 균열을 갖는 단층 그래핀시트(single layer graphene sheet, SLGS)의 모드 II 파괴 거동을 원자 시뮬레이션과 해석 모델에 기초하여 고찰하였다. 지그재그 그래핀 모델의 파괴를 분자동역학(molecular dynamics, MD)에 의해 해석한 결과 모드 II 파괴인성은 $2.04MPa{\sqrt{m}}$인 것으로 밝혀졌다. 또한 SLGS의 이론적인 $K_{IIc}$를 유도하기 위해 면내전단하중을 받는 다공체에 대한 파괴역학적 해석도 진행하였고 유한요소해석도 병행하였다. 모드 I과 모드 II의 비를 다양하게 변화시켜가면서 SLGS 의 혼합모드 파괴를 검토한 결과 혼합모드 파괴조건식이 얻어졌고 다른 문헌의 결과와 비슷함을 알 수 있었다.

일방향 CFRP적층판의 모드II 동적 층간파괴인성 평가 (Evaluation of Mode II Dynamic Interlaminar Fracture Toughness of Unidirectional CFRP Laminates)

  • 김지훈;정태훈;이현;양인영;조규재;심재기
    • 한국안전학회지
    • /
    • 제15권4호
    • /
    • pp.1-7
    • /
    • 2000
  • In this paper, an investigation was performed on the ModeII dynamic interlaminar fracture toughness of unidirectional CFRP laminates. The stacking sequences used in this experiment are two kinds of [$0_20$] and [$0_{10}F_20_{10}$]. In the experiments, Split Hopkinson's Bar test was applied to dynamic and notched flexure test. The Mode II fracture toughness of each unidirectional CFRP was estimated by the analyzed deflection of the specimen and J-Integral with the measured impulsive load and reactions at the supported points. As an experimental results, the specimen [$0_{10}F_20_{10}$] appears greater than that of [$0_20$] for the J-integral and displacement velocity at a measuring point within the range of experiment.

  • PDF

Tow waviness and anisotropy effects on Mode II fracture of triaxially woven composite

  • Al-Fasih, M.Y.;Kueh, A.B.H.;Abo Sabah, S.H.;Yahya, M.Y.
    • Steel and Composite Structures
    • /
    • 제26권2호
    • /
    • pp.241-253
    • /
    • 2018
  • Mode II fracture toughness, $K_{IIC}$, of single-ply triaxially woven fabric (TWF) composite due to tow waviness and anisotropy effects were numerically and experimentally studied. The numerical wavy beam network model with anisotropic material description denoted as TWF anisotropic was first validated with experimental Mode II fracture toughness test employing the modified compact tensile shear specimen configuration. 2D planar Kagome and TWF isotropic models were additionally constructed for various relative densities, crack lengths, and cell size parameters for examining effects due to tow waviness and anisotropy. $K_{IIC}$ generally increased with relative density, the inverse of cell size, and crack length. It was found that both the waviness and anisotropy of tow inflict a drop in $K_{IIC}$ of TWF. These effects were more adverse due to the waviness of tow compared to anisotropy.

GFRP 복합재료의 층간파괴인성치에 관한 연구 (A Study on the Interlaminar Fracture Toughness of Glass Fiber Reinforced Plastic Comosites)

  • 박기호
    • 수산해양기술연구
    • /
    • 제35권4호
    • /
    • pp.410-420
    • /
    • 1999
  • The value of the mode I interlamina fracture toughness, GIC, is calculated by experimental compliance method, modified compliance method and beam theory. The value of the mode II interlamina fracture toughness, GIC, is evaluated by beam method, theory beam theory and compliance method. This paper describes the effect of load pint displacement rate and speicimen geometries for mode I and II interlaminar fracture toughness of glass fiber reinforced plastic composites by using double cantilever beam (DCB) and end notched flexure (ENF) specimen. For the load point displacement rate of increases whereas the value of 2,6 and 10 mm/min the value of GIC decrease as load point displacement rate increases whereas the value of GIC is found to be no significant effect. The value of GIC decreases as initial crack length increases. The fractured surface of the DCB and ENF samples are examined by scanning electron microscopy (SEM).

  • PDF

CFRP 복합재료의 혼합모드 I/II 층간파괴인성치에 관한 연구 (A Study on Mixed Mode I/II Interlaminar Fracture Toughness of Carbon Fiber Reinforced Plastic Composites)

  • 김형진;박명일;김재동;고성위
    • 동력기계공학회지
    • /
    • 제4권3호
    • /
    • pp.48-54
    • /
    • 2000
  • This paper describes the effect of molding pressure, specimen geometries for Mixed Mode I/II interlaminar fracture toughness of carbon fiber reinforced plastic composites by using asymmetrical double cantilever beam(ADCB) specimen. The value of $G_{I/IIC}$ as a function of various molding pressure is almost same at 307, 431, 585 kPa. However it shows the highest value under 307 kPa molding pressure. The effect of $G_{I/IIC}$ due to the change of initial crack length of ADCB specimen was almost negligible in this study. It turns out that the condition for mix mode quasi-static crack growth in ADCB specimen is the ratio of the crack length to that of the specimen, i.e., ${\alpha}/L<0.4$.

  • PDF

炭素纖維强化 複合材料의 혼합모우드 層間破壞靭性値에 대한 硏究 (A study of mixed-mode interlaminar fracture toughness of graphite/epoxy composite)

  • 윤성호;홍창선
    • 대한기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.198-207
    • /
    • 1986
  • 본 연구에서는 Fig.1과 같이 시편 부위에 균일응력분포가 작용하도록 M.Arcan 등에 의해 제시된 비대칭형상의 시편고정물에 층간균열을 가진 시편을 부착한 다음 하중각도를 바꾸어가며 모우드 II뿐 아니라 혼합모우드 및 모우드 I까지도 실험 할 수 있는 실험장치를 사용하여 균열면에서의 섬유방향이 〔0/0〕이고 초기균열길이비가 0.4, 0.5, 0.6인 시편의 모우드I, 혼합모우드 및 모우드II 층간파괴인 성치들을 실험 적으로 구해 혼합모우드 파괴결정조건식들에 적용시켜 보았다. 또한 균열면에서의 섬유방향이 〔0/0〕, 〔0/30〕, 〔0/45〕및 〔0/60〕인 경우의 층간파괴인성치와 이때 의 파괴현상에 대해 관찰하였다.

Impact of temperature cycling on fracture resistance of asphalt concretes

  • Pirmohammad, Sadjad;Kiani, Ahad
    • Computers and Concrete
    • /
    • 제17권4호
    • /
    • pp.541-551
    • /
    • 2016
  • Asphalt pavements are exposed to complex weather conditions and vehicle traffic loads leading to crack initiation and crack propagation in asphalt pavements. This paper presents the impact of weather conditions on fracture toughness of an asphalt concrete, prevalently employed in Ardabil road networks, under tensile (mode I) and shear (mode II) loading. An improved semi-circular bend (SCB) specimen was employed to carry out the fracture experiments. These experiments were performed in two different weather conditions namely fixed and cyclic temperatures. The results showed that consideration of the impact of temperature cycling resulted in decreasing the fracture toughness of asphalt concrete significantly. Furthermore, the fracture toughness was highly affected by loading mode for the both fixed and cyclic temperature conditions studied in this paper. In addition, it was found that the MTS criterion correctly predicts the onset of fracture initiation although this prediction was slightly conservative.

콘크리트 디스크를 이용한 혼합모드 파괴 (The Mixed Mode Fracture Using Concrete Disk)

  • 진치섭;김희성;정진호
    • 콘크리트학회논문집
    • /
    • 제12권2호
    • /
    • pp.63-69
    • /
    • 2000
  • This study investigates a new method of using a concrete disk to calculate stress intensity factor (SIF) for mixed mode cases. The results indicate that the disk method is more accurate than three point bending test (TPB) in obtaining correct SIF values for mixed mode fracture propagation. Stress intensity factors $K_{I}$ and $K_{II}$ are calculated using a center notched disk subjected to splitting load. The notch angle is calculated by finite element (FEM). Fracture toughness $K_\textsc{k}$ of the concrete is obtained from the load intensities at the initiation of crack propagation. According to the finite element analysis(FEA) and disk test, the results show that mode I and mixed mode cracks propagate toward the directions of crack face and loading point, respectively. The results from FEA with maximum stress theory compare well with the experimental date. Unlike TPB method where an accurate fracture toughness value is difficult to obtain due to the irregular shape of load deflection curve and delayed final crack propagation (following slow stable cracking). fracture toughness value is easily measured in the disk test from the crack initial load. Therefore, it is safe to conclude that disk method is more advantageous than TPB method in analyzing combined mode fracture problems.

복합재료/금속 접착 계면의 혼합모드 파괴인성 측정 (Mixed-mode fracture toughness measurement of a composite/metal interface)

  • 김원석;장창재;이정주
    • Composites Research
    • /
    • 제24권2호
    • /
    • pp.1-8
    • /
    • 2011
  • 복합재료/금속 접착 조인트의 파손기준을 제시하기 위하여 다양한 혼합모드 하중상태에서 계면파괴인성을 측정하였다. 계면파괴인성은 SLB 시편을 이용하여 측정하였으며 시편의 두께를 변화시킴으로 모드 혼합비율을 다양하게 설정하였다. 실험결과 계면의 파괴인성은 균열 열림에 비해 균열 미끄러짐 모드의 비율이 높은 하중상태에서 더 큰 값을 나타내었다. 균열 열림 및 미끄러짐 하중모드에 따른 계면파괴 거동의 차이를 균열진전 과정을 관찰한 현미경 영상을 기초로 고찰하였다. 표면 거칠기가 접착 강도에 미치는 영향 또한 고찰되었다.