• Title/Summary/Keyword: Mode I

Search Result 2,225, Processing Time 0.027 seconds

Strength failure behavior of granite containing two holes under Brazilian test

  • Huang, Yan-Hua;Yang, Sheng-Qi;Zhang, Chun-Shun
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.919-933
    • /
    • 2017
  • A series of Brazilian tests under diameter compression for disc specimens was carried out to investigate the strength and failure behavior by using acoustic emission (AE) and photography monitoring technique. On the basis of experimental results, load-displacement curves, AE counts, real-time crack evolution process, failure modes and strength property of granite specimens containing two pre-existing holes were analyzed in detail. Two typical types of load-displacement curves are identified, i.e., sudden instability (type I) and progressive failure (type II). In accordance with the two types of load-displacement curves, the AE events also have different responses. The present experiments on disc specimens containing two pre-existing holes under Brazilian test reveal four distinct failure modes, including diametrical splitting failure mode (mode I), one crack coalescence failure mode (mode II), two crack coalescences failure mode (mode III) and no crack coalescence failure mode (mode IV). Compared with intact granite specimen, the disc specimen containing two holes fails with lower strength, which is closely related to the bridge angle. The failure strength of pre-holed specimen first decreases and then increases with the bridge angle. Finally, a preliminary interpretation was proposed to explain the strength evolution law of granite specimen containing two holes based on the microscopic observation of fracture plane.

Hybrid Rule-Interval Variation(HRIV) Method for Stabilization a Class of Nonlinear Systems (비선형 시스템의 안정을 위한 HRIV 방법의 제안)

  • Myung, Hwan-Chun;Z. Zenn Bien
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.249-255
    • /
    • 2000
  • HRIV(Hybrid Rule-Interval Variation) method is presented to stabilize a class of nonlinear systems, where SMC(Sliding Mode Control) and ADC (ADaptive Control) schemes are incorporated to overcome the unstable characteristics of a conventional FLC(Fuzzy Logic Control). HRIV method consists of two modes: I-mode (Integral Sliding Mode PLC) and R-mode(RIV method). In I-mode, SMC is used to compensate for MAE(Minimum Approximation Error) caused by the heuristic characteristics of FLC. In R-mode, RIV method reduces interval lengths of rules as states converge to an equilibrium point, which makes the defined Lyapunov function candidate negative semi-definite without considering MAE, and the new uncertain parameters generated in R-mode are compensated by SMC. In RIV method, the overcontraction problem that the states are out of a rule-table can happen by the excessive reduction of rule intervals, which is solved with a dynamic modification of rule-intervals and a transition to I-mode. Especially, HRIV method has advantages to use the analytic upper bound of MAE and to reduce Its effect in the control input, compared with the previous researches. Finally, the proposed method is applied to stabilize a simple nonlinear system and a modified inverted pendulum system in simulation experiments.

  • PDF

Study for Biological Denitrification of High-Strength Nitrate and Nitrite Industrial Wastewater (고농도 질산 및 아질산성 질소 함유 폐수의 생물학적 탈질에 관한 연구)

  • Lee, Byong Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.446-454
    • /
    • 2005
  • An economic treatment method to remove oxidized nitrogen from wastewater is biological denitrification with organic matters. Several organics can be used, however, methanol is commonly used. When methanol is provided, M:N (Methanol to Nitrogen) ratio is used to define methanol demand for denitrification. In this study, two artificial wastewaters were provided to a biological system to evaluate denitrification performance. Differences of influent total CODcr from effluent soluble CODcr were converted to methanol equivalent and oxidized nitrogen difference between influent and effluent were converted to nitrate equivalent to define M:N ratios. Modes I, II, III, I-1 and IV showed 5.1, 2.7, 3.3, 2.3 and 2.6 of M:N ratios, respectively. Since denitrifying microorganisms had to build a new metabolic system for methanol and influent organics, initial operation mode, Mode I, required more methanol and this resulted in high M:N ratios compared with later operation mode, Mode I-1. Salt in influent did not show inhibitory effects on denitrfication, although this was believed to increase effluent SS and soluble CODcr concentrations in Mode III, I-1 and IV, respectively. The concentrations of effluent soluble $COD_{Mn}$ did not changed much with influent salt.

An Effective Mode Decision Algorithm in H.264/AVC Encoder (H.264/AVC 부호화기에 대한 효과적인 모드 결정 알고리즘)

  • Moon Jeong-Mee;Kim Jae-Ho;Moon Yong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3C
    • /
    • pp.250-257
    • /
    • 2006
  • In this paper, we propose an efficient algorithm for the RDO mode decision in H.264/AVC encoder. Based on the properties of DCT coefficients and the RDO mode decision processing, we derive a new condition for detecting an error block having all-zero DCT coefficient (AZCB). (I)DCT, (I)Q, and entropy coding are skipped for AZCBs in the proposed algorithm. It makes the reduction of the computational complexity for the RDO mode decision. Simulation results show that the proposed algorithm achieves computational saving over 40% compared to the conventional method.

Relationship between Spatter Generation and Waveform Factors in Transitional Condition of $CO_2$ Welding ($CO_2$ 용접의 천이이행 조건에서 스패터 발생과 파형인자와의 관계)

  • 강봉용;이창한;김희진;장희석
    • Journal of Welding and Joining
    • /
    • v.16 no.4
    • /
    • pp.39-46
    • /
    • 1998
  • $CO_2$ gas shielded arc welding has been characterized with its harsh arc compared to Ar-based shielding gases and with its high level of spattere specially in welding current range of 250~300 amperes. In this range of welding current, the metal transfer mode showed to be changed from short circuit to globular with the increase of welding voltage resulting in so-called the transitional mode in which both modes of transfer appeared together. To characterize the transitional mode, the short circuit events were divided into two groups, i.e. normal short circuit (N.S.C) which has short circuit time $(t_s)$ over 2msec and instantaneous short circuit (I.S.C) of $t_s$$\leq$2msec. The experimental results showed that the number of N.S.C decreased almost linearly with the increase of welding voltage and appeared to be not related with spatter generation rate. However I.S.C became to be pronounced in the transitional condition and its number reached the maximum value at around 29.0 volts. Considering the relation with the spatter generation rate, it was found that the number of I.S.C had a very strong correlation with the spatter generation rate of the transitional condition. It was further demonstrated that spatter generation rate decreased quite linearly with the decrease of I.S.C frequency. It implies that I.S.C is the most important waveform factor controlling the spatter generation of the transitional mode, i.e. in the middle range of welding current. Based on these results, It was discussed that in the transitional mode the basic concept of waveform control for suppressing spatter generation would be different from the one applied for typical short circuit transfer mode of low welding current.

  • PDF

Experimental Study on Mode-I Energy Release Rate of Polypropylene Adhesive Layer Manufactured by Microwave Composite Forming Process (마이크로파 복합재 성형 공정을 이용한 폴리프로필렌 접착층의 모드 I 에너지 해방률에 대한 실험적 연구)

  • Park, E.T.;Kim, T.J.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.31 no.1
    • /
    • pp.29-38
    • /
    • 2022
  • Recently, the composite material market is gradually growing. Various composite forming processes have been developed in order to reduce the production cost of the composite material. Unlike the conventional forming process, the microwave composite forming process has the advantage of reducing the processing time because the composite material is heated directly or indirectly at the same time. Due to this advantage, in this study, a double cantilever beam test was conducted with specimens manufactured by the microwave composite forming process. The purpose of this study was to compare mode-I energy release rate for specimens manufactured by prepreg compression forming and microwave composite forming processes. First, a microwave oven was proposed to conduct the microwave composite forming process. Double cantilever beam specimens were manufactured. After that, the double cantilever beam test was conducted to obtain the mode-I energy release rate. Mode-I energy release rates of specimens manufactured by the microwave composite forming and prepreg compression forming processes were then compared. As a result, mode-I energy release rates of specimens fabricated by the microwave composite forming process were similar to those fabricated with the prepreg compression forming process with a relatively reduced process time.

Study on Mode I Fracture Toughness and FEM analysis of Carbon/Epoxy Laminates Using Acoustic Emission Signal (음향 방출 신호를 이용한 탄소/에폭시 적층판의 Mode I 파괴 인성 및 유한요소해석에 관한 연구)

  • Cho, Hyun-jun;Jeon, Min-Hyeok;No, Hae-Ri;Kim, In-Gul
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.61-68
    • /
    • 2022
  • Composite materials have been used in aerospace industry and many applications because of many advantages such as specific strength and stiffness and corrosion resistance etc. However, it is vulnerable to impacts, these impact lead to formation of cracks in composite laminate and failure of structures. In this paper, we analyzed Mode I fracture toughness of Carbon/Epoxy laminates using acoustic emission signal. DCB test was carried out to analyze Mode I failure characterization of Carbon/Epoxy laminates, and AE sensor was attached to measure AE signal induced by failure of specimen. Fracture toughness was calculated using cumulative AE energy and measured crack length using camera. The calculated fracture toughness was applied in FE model and the result of FE analysis compared with DCB test results. The results show good agreement with between FEM and DCB test results.

An elliptical fracture criterion for mixed mode fracture I+II emanating from notches

  • El Minor, H.;Pluvinage, G.;Azari, Z.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.1
    • /
    • pp.87-97
    • /
    • 2007
  • Some mixed mode fracture criterion may be converted in to elliptical or ellipsoidal formula with the aid of mathematical translation. Hence, the crack initiation in mixed mode fracture I+II emanating from notches, has been studied using notched circular ring specimens. On the basis of Irwin (1957) theory, a new criteria in mixed mode fracture I+II, based fracture elliptic criterion and notch stress intensity factors has been developed.

The Evaluation of Fracture Toughness on Mode I for Twill CFRP/GFRP Laminated Hybrid Composites (능직 CFRP/GFRP 적층하이브리드 복합재의 Mode I 파괴인성 평가)

  • Roh, Young Woo;Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.9-14
    • /
    • 2020
  • In order to realize high strength and light weight for various industrial facilities and structural materials, various new materials are applied to product design. Among them, CFRP has excellent specific strength and non-rigidity, and the scope of use is expanding throughout the industry, such as mobility products and building materials. GFRP is cheaper than CFRP, and has excellent specific strength and non-rigidity, and has excellent heat resistance and sound insulation, so it has been adopted as a core material for flooring and interior flooring. CFRP of twill weave structure has better resistance to deformation of fiber than plain weave structure, so the outermost layer is applied as twill weave structure in product design. After fabrication with DCB specimens, Mode I fracture toughness was evaluated according to the crack length. As the crack length increases, the energy release rate and stress intensity factor values tended to decrease overall.

Development of CVTs Composed of a 2K-H I Type Differential Gear Unit and a V-belt Drive (2K-H형 I 형식 차동기어장치와 V-belt 전동장치를 결합한 무단변속기의 개발)

  • Kim, Yeon-Su;Choi, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1060-1068
    • /
    • 2002
  • Compound continuously variable transmission(CVT) mechanisms are proposed, which can offer a backward mode, a geared neutral, an underdrive mode and an overdrive mode. They are composed of a 2K-H I type differential gear unit, a V-belt type continuously variable unit(CVU), a few friction clutches and gears, and not required of a starting device as a torque converter. Compound CVT mechanisms developed here present two distinct operating modes which are a power circulation mode and a power split mode. The transition of two modes takes place at the particular CVU speed ratio. For these CVT mechanisms, performance analysis related to speed ratio, power ratio and efficiency are executed and proven by experimental studies.