• Title/Summary/Keyword: Modal parameters identification

Search Result 207, Processing Time 0.02 seconds

Investigation of modal identification and modal identifiability of a cable-stayed bridge with Bayesian framework

  • Kuok, Sin-Chi;Yuen, Ka-Veng
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.445-470
    • /
    • 2016
  • In this study, the Bayesian probabilistic framework is investigated for modal identification and modal identifiability based on the field measurements provided in the structural health monitoring benchmark problem of an instrumented cable-stayed bridge named Ting Kau Bridge (TKB). The comprehensive structural health monitoring system on the cable-stayed TKB has been operated for more than ten years and it is recognized as one of the best test-beds with readily available field measurements. The benchmark problem of the cable-stayed bridge is established to stimulate investigations on modal identifiability and the present paper addresses this benchmark problem from the Bayesian prospective. In contrast to deterministic approaches, an appealing feature of the Bayesian approach is that not only the optimal values of the modal parameters can be obtained but also the associated estimation uncertainty can be quantified in the form of probability distribution. The uncertainty quantification provides necessary information to evaluate the reliability of parametric identification results as well as modal identifiability. Herein, the Bayesian spectral density approach is conducted for output-only modal identification and the Bayesian model class selection approach is used to evaluate the significance of different modes in modal identification. Detailed analysis on the modal identification and modal identifiability based on the measurements of the bridge will be presented. Moreover, the advantages and potentials of Bayesian probabilistic framework on structural health monitoring will be discussed.

Identification of Stiffness Parameters of Nanjing TV Tower Using Ambient Vibration Records (상시진동 계측자료를 이용한 Nanjing TV탑의 강성계수 추정)

  • Kim Jae Min;Feng. M. Q.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.291-300
    • /
    • 1998
  • This paper demonstrates how ambient vibration measurements at a limited number of locations can be effectively utilized to estimate parameters of a finite element model of a large-scale structural system involving a large number of elements. System identification using ambient vibration measurements presents a challenge requiring the use of special identification techniques, which ran deal with very small magnitudes of ambient vibration contaminated by noise without the knowledge of input farces. In the present study, the modal parameters such as natural frequencies, damping ratios, and mode shapes of the structural system were estimated by means of appropriate system identification techniques including the random decrement method. Moreover, estimation of parameters such as the stiffness matrix of the finite element model from the system response measured by a limited number of sensors is another challenge. In this study, the system stiffness matrix was estimated by using the quadratic optimization involving the computed and measured modal strain energy of the system, with the aid of a sensitivity relationship between each element stiffness and the modal parameters established by the second order inverse modal perturbation theory. The finite element models thus identified represent the actual structural system very well, as their calculated dynamic characteristics satisfactorily matched the observed ones from the ambient vibration test performed on a large-scale structural system subjected primarily to ambient wind excitations. The dynamic models identified by this study will be used for design of an active mass damper system to be installed on this structure fer suppressing its wind vibration.

  • PDF

Wind and traffic-induced variation of dynamic characteristics of a cable-stayed bridge - benchmark study

  • Park, Jae-Hyung;Huynh, Thanh-Canh;Lee, Kwang-Suk;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.491-522
    • /
    • 2016
  • A benchmark problem for modal identification of a cable-stayed bridge was proposed by a research team at Hong Kong Polytechnic University. By taking an instrumented cable-stayed bridge as a test bed, nineteen sets of vibration records with known/unknown excitations were provided to invited researchers. In this paper, the vibration responses of the bridge under a series of excitation conditions are examined to estimate the wind and traffic-induced variations of its dynamic characteristics. Firstly, two output-only experimental modal identification methods are selected. Secondly, the bridge and its monitoring system are described and the nineteen sets of vibration records are analyzed in time-domain and frequency-domain. Excitations sources of blind datasets are predicted based on the analysis of excitation conditions of known datasets. Thirdly, modal parameters are extracted by using the two selected output-only modal identification methods. The identified modal parameters are examined with respect to at least two different conditions such as traffic- and typhoon-induced loadings. Finally, the typhoon-induced effects on dynamic characteristics of the bridge are estimated by analyzing the relationship between the wind velocity and the modal parameters.

Direct identification of modal parameters using the continuous wavelet transform, case of forced vibration

  • Bedaoui, Safia;Afra, Hamid;Argoul, Pierre
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.393-408
    • /
    • 2014
  • In this paper, a direct identification of modal parameters using the continuous wavelet transform is proposed. The purpose of this method is to transform the differential equations of motion into a system of algebraic linear equations whose unknown coefficients are modal parameters. The efficiency of the present method is confirmed by numerical data, without and with noise contamination, simulated from a discrete forced system with four degrees-of-freedom (4DOF) proportionally damped.

Structural modal identification through ensemble empirical modal decomposition

  • Zhang, J.;Yan, R.Q.;Yang, C.Q.
    • Smart Structures and Systems
    • /
    • v.11 no.1
    • /
    • pp.123-134
    • /
    • 2013
  • Identifying structural modal parameters, especially those modes within high frequency range, from ambient data is still a challenging problem due to various kinds of uncertainty involved in vibration measurements. A procedure applying an ensemble empirical mode decomposition (EEMD) method is proposed for accurate and robust structural modal identification. In the proposed method, the EEMD process is first implemented to decompose the original ambient data to a set of intrinsic mode functions (IMFs), which are zero-mean time series with energy in narrow frequency bands. Subsequently, a Sub-PolyMAX method is performed in narrow frequency bands by using IMFs as primary data for structural modal identification. The merit of the proposed method is that it performs structural identification in narrow frequency bands (take IMFs as primary data), unlike the traditional method in the whole frequency space (take original measurements as primary data), thus it produces more accurate identification results. A numerical example and a multiple-span continuous steel bridge have been investigated to verify the effectiveness of the proposed method.

Modal Identification of a Slender Structure using the Proper Orthogonal Decomposition Method (Proper Orthogonal Decomposition 기법을 이용한 세장한 구조물의 모드인자 파악)

  • Ham, Hee-Jung
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.135-141
    • /
    • 2008
  • In this paper, the Proper Orthogonal Decomposition (POD) method, which is a statistical analysis technique to find the modal characteristics of a structure, is adapted to identify the modal parameters of a tall chimney structure. A wind force time history, which is applied to the structure, is obtained by a wind tunnel test of a scale down model. The POD method is applied on the wind force induced responses of the structure, and the true normal modes of the structure can be obtained. The modal parameters including, natural frequency, mode shape, damping ratio and kinetic energy of the structure can be estimated accurately. With these results, it may be concluded that the POD method can be applied to obtain accurate modal parameters from the wind-induced building responses.

  • PDF

Experimental evaluation of crack effects on the dynamic characteristics of a prototype arch dam using ambient vibration tests

  • Sevim, Baris;Altunisik, Ahmet Can;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.277-294
    • /
    • 2012
  • The aim of the study is to determine the modal parameters of a prototype damaged arch dam by operational modal analysis (OMA) method for some damage scenarios. For this purpose, a prototype arch dam-reservoir-foundation model is constructed under laboratory conditions. Ambient vibration tests on the arch dam model are performed to identify the modal parameters such as natural frequency, mode shape and damping ratio. The tests are conducted for four test-case scenarios: an undamaged dam with empty reservoir, two different damaged dams with empty reservoirs, and a damaged dam with full reservoir. Loading simulating random impact effects is applied on the dam to crack. Cracks and fractures occurred at the middle of the upper part of the dams and distributed through the abutments. Sensitivity accelerometers are placed on the dams' crests to collect signals for measurements. Operational modal analysis software processes the signals collected from the ambient vibration tests, and enhanced frequency domain decomposition and stochastic subspace identification techniques are used to estimate modal parameters of the dams. The modal parameters are obtained to establish a basis for comparison of the results of two techniques for each damage case. Results show that approximately 35-40% difference exists between the natural frequencies obtained from Case 1 and Case 4. The natural frequencies of the dam considerably decrease with increasing cracks. However, observation shows that the filled reservoir slightly affected modal parameters of the dam after severe cracking. The mode shapes obtained are symmetrical and anti-symmetrical. Apparently, mode shapes in Case 1 represent the probable responses of arch dams more accurately. Also, damping ratio show an increase when cracking increases.

Modal parameter identification of tall buildings based on variational mode decomposition and energy separation

  • Kang Cai;Mingfeng Huang;Xiao Li;Haiwei Xu;Binbin Li;Chen Yang
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.445-460
    • /
    • 2023
  • Accurate estimation of modal parameters (i.e., natural frequency, damping ratio) of tall buildings is of great importance to their structural design, structural health monitoring, vibration control, and state assessment. Based on the combination of variational mode decomposition, smoothed discrete energy separation algorithm-1, and Half-cycle energy operator (VMD-SH), this paper presents a method for structural modal parameter estimation. The variational mode decomposition is proved to be effective and reliable for decomposing the mixed-signal with low frequencies and damping ratios, and the validity of both smoothed discrete energy separation algorithm-1 and Half-cycle energy operator in the modal identification of a single modal system is verified. By incorporating these techniques, the VMD-SH method is able to accurately identify and extract the various modes present in a signal, providing improved insights into its underlying structure and behavior. Subsequently, a numerical study of a four-story frame structure is conducted using the Newmark-β method, and it is found that the relative errors of natural frequency and damping ratio estimated by the presented method are much smaller than those by traditional methods, validating the effectiveness and accuracy of the combined method for the modal identification of the multi-modal system. Furthermore, the presented method is employed to estimate modal parameters of a full-scale tall building utilizing acceleration responses. The identified results verify the applicability and accuracy of the presented VMD-SH method in field measurements. The study demonstrates the effectiveness and robustness of the proposed VMD-SH method in accurately estimating modal parameters of tall buildings from acceleration response data.

Automatic modal identification and variability in measured modal vectors of a cable-stayed bridge

  • Ni, Y.Q.;Fan, K.Q.;Zheng, G.;Ko, J.M.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.123-139
    • /
    • 2005
  • An automatic modal identification program is developed for continuous extraction of modal parameters of three cable-supported bridges in Hong Kong which are instrumented with a long-term monitoring system. The program employs the Complex Modal Indication Function (CMIF) algorithm for identifying modal properties from continuous ambient vibration measurements in an on-line manner. By using the LabVIEW graphical programming language, the software realizes the algorithm in Virtual Instrument (VI) style. The applicability and implementation issues of the developed software are demonstrated by using one-year measurement data acquired from 67 channels of accelerometers permanently installed on the cable-stayed Ting Kau Bridge. With the continuously identified results, variability in modal vectors due to varying environmental conditions and measurement errors is observed. Such an observation is very helpful for selection of appropriate measured modal vectors for structural health monitoring use.

A Feasibility Study on the Application of the Topology Optimization Method for Structural Damage Identification (구조물의 결함 규명을 위한 위상최적설계 기법의 적용가능성 연구)

  • Lee, Joong-Seok;Kim, Jae-Eun;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.115-123
    • /
    • 2006
  • A feasibility of using the topology optimization method for structural damage identification is investigated for the first time. The frequency response functions (FRFs) are assumed to be constructed by the finite element models of damaged and undamaged structures. In addition to commonly used resonances, antiresonances are employed as the damage identifying modal parameters. For the topology optimization formulation, the modal parameters of the undamaged structure are made to approach those of the damaged structure by means of the constraint equations, while the objective function is an explicit penalty function requiring clear black-and-white images. The developed formulation is especially suitable for damage identification problems dealing with many modal parameters. Although relatively simple numerical problems were considered in this investigation, the possibility of using the topology optimization method for structural damage identification is suggested through this research.