• Title/Summary/Keyword: Modal Testing

Search Result 303, Processing Time 0.029 seconds

A Study on the AWS (All Wheel Steering) ECU Test considering Requirement for Behavior of Bi-modal Tram (바이모달 트램의 거동을 요구사항으로 고려한 전차를 조향 시스템 테스트에 관한 연구)

  • Lee, Jin-Hee;Park, Tae-Won;Lee, Soo-Ho;Jung, Ki-Hyun;Choi, Kyung-Hee;Moon, Kyeong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.229-238
    • /
    • 2009
  • In this paper, AWS ECU test method, which is considering behavior of a Bi-modal tram, is described. In order to evaluate the performance of an electronic automotive ECU, the method which combines HILS (Hardware In the Loop Simulation) and RBT (Requirement Based Testing) is introduced. HILS is the method to predict the behavior of a vehicle adopting an ECU. The behavior of a Bi-modal tram can be analyzed by using the vehicle dynamic model. Requirement Based Testing compare the outputs of a real system with a virtual electronic unit (oracle) which created by the requirements. Rear axles of the Bi-modal tram are independently controlled by two AWS ECU. Especially, swing out can happen when an articulated vehicle is operated in the curved road. Therefore dynamic behaviour of a Bi-modal tram is considered at this situation. Through this study, the reliability of ECU can be verified economically and safely using the proposed test method before conducting the track test.

  • PDF

Selection of Connection Position to Change Dynamic Characteristic of Structure (동특성 변경을 위한 구조물의 결합 위치 선정)

  • 김경원;박윤식;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.65-71
    • /
    • 2003
  • This research deals with how to select connection positions of two substructures to be synthesized. The goal of this research is to find optimal connection positions in order to maximize the fundamental natural frequency of the synthesized structure. The natural frequencies of a connected structure are obtained by modal-force equations. Optimal connection positions can be selected through optimization process. In the optimization process, the natural frequencies of a connected structure are set to object function value and connection positions become design variables. The method described above is applied to synthesis problems of plates, which is initially conducted for FE models and verified through experiments. Especially in experiments, FRE(frequency Response function)s are obtained by means of the Modal Testing technique to be used in modal-force equations for synthesizing. Once the substructures are synthesized, the Modal Testing technique is again applied to spot-welded structure using the result from the optimization procedure. It is found that the fundamental natural frequency of the synthesized structure with the optimized result gives higher value than those with the initially given connection positions.

  • PDF

Optimum amount of additive mass in scaling of operational mode shapes

  • Khatibi, M.M.;Ashory, M.R.;Albooyeh, A.R.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.5
    • /
    • pp.733-750
    • /
    • 2011
  • Recently, identification of modal parameters using the response only data has attracted considerable attention particularly where the classic modal testing methods is difficult to conduct. One drawback of the response only data, also known as Operational Modal Analysis (OMA), is that only the unscaled mode shapes can be obtained which restricts the applications of OMA. The Mass change method is a usual way to scale the operational mode shapes. In this article a new method is proposed to optimize the additive mass for scaling of the unscaled mode shapes from OMA for which a priori knowledge of the Finite Element model of structure is required. It is shown that the total error of the scaled mode shapes is minimized using the proposed method. The method is validated using a numerical case study of a beam. Moreover, the experimental results of a clamped-clamped beam demonstrate the applicability of the method.

Experimental Modal Test on a Scale Model of Floating Structure

  • Park, Soo-Yong;Song, Hwa-Cheol;Park, Dong-Cheon
    • Journal of Navigation and Port Research
    • /
    • v.36 no.2
    • /
    • pp.89-95
    • /
    • 2012
  • Identification of the modal properties of a structural system has received much attention over the years because of its importance in structural model updating, structural health monitoring and structural control. This paper presents experimental modal test results such as natural frequencies and mode shapes of a scale model of floating structure. A modal testing is performed on the structure and modal parameters for the structure are extracted from the measured data. The results are compared to a finite element model and the correlation between the measured and analytical modal parameters is investigated.

Modal Testing of Arches for Plastic Film-Covered Greenhouses (비닐하우스 아치구조의 모달실험)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.57-65
    • /
    • 2010
  • To determine the static buckling loads and evaluate the structural performance of slender steel pipe-arches such as for greenhouse structures, a series of modal tests using a fixed hammer and roving sensors was carried out, by providing no load, then a range of vertical loads, on an arch rib in several steps. More attention was given to an internal arch where vertical and horizontal auxiliary members are not placed, unlike an end arch. Modal parameters such as natural frequencies, mode shapes and damping ratios were extracted using more advanced system identification methods such as PolyMAX (Polyreference Least-Squares Complex Frequency Domain), and compared with those predicted by commercial FEA (Finite Element Analysis) software ANSYS for various conditions. A good correlation between them was achieved in an overall sense, however the reduction of natural frequencies due to the existence of preaxial loads was not apparent when the vertical load level was about up to 38% of its resistance. Some difficulties related to the field testing and parameter extraction for a very slender arch, as might arise from the influences of neighboring members, are carefully discussed.

Oil Whirl Effects on Rotor-Bearing System Identifications by Modal Testing

  • Jei, Yang-Gyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.105-110
    • /
    • 1991
  • Oil whirl effects on system identification during modal testings are discussed. When the forward rotating excitations act, the oil whirl effects seriously appear. But when the backward rotating and uni-directional excitations act, and the magnitude of forward excitation is small, oil whirl effect do not appear in forced response function. The results of simulation of oil whirl effects during modal testing are well coincident with those of experiments. With the uni-directional excitation technique the linearized dynamic coefficients of fluid film bearings and seals can be estimated more accurately than with the circular rotating excitation technique. But with the circular excitation technique oil whirl effects can be well investigated.

  • PDF

Bearing Modeling of Superconducting Magnetic Bearings-Flywheel System (초전도 자기베어링-플라이휠 시스템의 베어링 모델링)

  • 김정근;이수훈
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.891-898
    • /
    • 1999
  • The purpose of Superconducting Magnetic Bearing Flywheel Energy Storage System (SMB-FESS) is to store unused nighttime electricity until it is needed during daytime. An analytical model of the SMB-FESS is necessary to identify the system behavior. At first, we have to model the superconducting magnetic bearing. Modeling the SMB is same as estimating the bearing parameter. The theoretical modal parameter is calculated through the equation of motion and the experimental modal parameter is estimated through the impact testing (modal testing). The bearing parameter is searched by using the non-linear least square method until the theoretical result corresponds to the experimental result. The suggested modeling method is verified by comparing experimental and analytical frequency response function.

  • PDF

Damage Assessment of a Post-Tensioned Segmental Concrete Bridge Using Modal Testing Data (모달시험을 통한 Post-Tensioned Segmental 콘크리트 교량의 손상평가)

  • Heo, Gwanghee;Choi, Man-Yong;Wang, M.L.
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.4
    • /
    • pp.205-214
    • /
    • 1999
  • 구조물의 동특성(고유진동수, 감쇠, 모드형상 등)의 변화는 구조물의 안전도를 평가할 수 있는 한 방법이다. 본 연구에서 콘크리트 세그먼트의 웨브 부분에 상당히 많은 균열이 진전되고 있는 상태의 Post-Tensioned Segmental 콘크리트 교량의 안전도 평가를 시도하였다. 안전도 평가를 위한 근간 데이터로 1986년 측정했던 데이터와 2차원 유한요소해석에서 얻은 결과값을 사용했다. 손상의 정도와 손상의 위치를 보다 정확히 찾아내기 위한 기술 중의 한 방법으로 Modal Test를 이용하였다. 이 방법이 Post-Tensioned Segmental 콘크리트 교량에 적용되어 교량의 안전도를 분석 평가하였다.

  • PDF

Analysis of Implant Prosthesis using 2-Dimensional Finite Element Method (2차원유한요소분석을 이용한 임플란트 보철물의 적합도 분석)

  • Kwon, Ho-Beom;Park, Chan-Je;Lee, Seok-Hyoung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.4
    • /
    • pp.341-348
    • /
    • 2006
  • Accurate fit of the implant prosthesis is important in ensuring long term success of osseointegrated implant. Inaccurate fit of the implant prosthesis may give rise to complications and mechanical failure. To evaluate fite of the implant prosthesis, the development of the methods of analyzing the degree of misfit is important in clinical practice. To analyze the degree of the misfit of implant prosthesis, modal testing was used. A 2-dimensional finite element modal testing was accomplished. Four 2-dimensional finite element models with various levels of misfit of implant prostheses were constructed. Thickness gauges were simulated to make misfit in the implant prostheses. With eigenvalue analysis, the natural frequencies of the models were found in the frequency domain representation of vibration. According to the difference of degree of misfit, natural frequencies of the models were changed.

Buckling and Vibration Characteristics of the Capsule for Nuclear Fuel Irradiation Test (핵연료 조사시험용 캡슐 구조물의 좌굴 및 진동특성)

  • 강영환;김봉구;류정수;김영진;최명환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.125-130
    • /
    • 2004
  • The vibration and buckling characteristics of the capsule for fuel irradiation test are studied. The natural frequencies of the capsule in air and under water are obtained by modal testing and finite element(FE) analysis using ANSYS program, and accelerations with flow are measured to estimate the compatibility with the operation requirement of the HANARO reactor. The experimental fundamental frequency of the capsule in the x and z direction is 8.5Hz and 8.75Hz in air, and 7.5Hz and 7.75Hz under water, respectively. The maximum amplitude of accelerations under the normal operating condition is measured as 11.0m/s$^2$ that is within the allowable vibrational limit(18.99m/s$^2$) of the reactor structure. Also, the maximum displacement at 100% flow is calculated as 0.13mm which is not interference with other nearby structures. FE analysis results show that the natural frequencies are found to be similar to those of the modal testing when three supporting parts are considered as simply supported conditions. From the buckling analysis, when the loading tool is applied, the critical buckling load of the capsule is 233N.

  • PDF