• 제목/요약/키워드: Modal Test

검색결과 715건 처리시간 0.027초

발.변전용 지지애자의 기계적 강도해석과 특성시험 (Mechanical Strength Analysis and Property Test of Post Insulator for Substation and Generation)

  • 박기호;조한구;한동희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 연구회
    • /
    • pp.69-71
    • /
    • 2001
  • FRP has been used very much as high strength core materials for insulators because of its high strength and good insulation properties. In this study cantilever, tension and torsion stress were simulation along to the unidirection glass fiber. In addition, FRP was made by pultrusion method. This paper proposed the procedure of the finite element model updating and pretest using the commerical finite element code MSC.Nastran. To ehance the efficiency of experimental modal analysis. we proposed the process which is the selection of the locations and the number of measurement points for pre-test.

  • PDF

구체손상에 따른 콘크리트 교각의 고유진동수 변화 (Damage Effects on the Natural Frequency of Concrete Pier)

  • 박병철;오금호;박승범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.335-338
    • /
    • 2005
  • This study was performed to verify that the impact vibration test on the damaged concrete pier can be adopted for assessment of the bridge substructure integrity. Using the experimental modal analysis, the dynamic property changes of the concrete pier are investigated according to the damage levels which are modeled by the loss of cross section area of the pier body. As a result of the impact vibration test, it is found that the natural frequency of the bridge substructure is reduced due to the damage on the pier such as loss of cross section area, and the natural frequency can be used for assessment of the integrity index.

  • PDF

프레스 광전자식 방호장치의 충격진동 저감 (Shock and Vibration Reduction of the Opto-Electronic Protective Device for the Press Machine)

  • 최승주
    • 한국안전학회지
    • /
    • 제26권5호
    • /
    • pp.13-16
    • /
    • 2011
  • The vibration and shock of the opto-electronic protective device was induced mechanical failure or fail to work correctly. In order to identify the exciting frequency components of vibration and shock, vibration signals are measured and analyzed from the mechanical power press. In addition, the modal test for the opto-electronic protective device was performed to investigate the dynamic characteristics. Some FEM simulations were carried out and then anti vibration mount was made for opto-electronic protective device. Based on the results of simulations, some kind of rubber mounts were tested to demonstrate the reduction of vibration and shock. It was verified by the test that a considerable amount of vibration and shock were reduced.

교량건전성 평가의 개선을 위한 상시진동시험 (Ambient Vibration Tests for Enhanced Bridges Integrity Assessment)

  • 이진학;이종재;이창근;이원태;윤정방
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.611-614
    • /
    • 2004
  • In this study, ambient vibration tests are carried out to replace the current bridge integrity assessment using controlled vehicle test, which requires the traffic control and may induce public complains. Ambient vibration tests and output-only modal identification can be very effective approach to evaluate the bridge integrity because the ambient vibration tests can be performed very easily without trafnc control. The bridges in test road of Jungbu Inland Highway were tested and the results are discussed here.

  • PDF

다점 단순지지된 연속원통셸의 진동특성에 대한 실험적 고찰 (An Experimental Study on the Vibraton Characteristics of a Continuous Circular Cylindrical Shell with the Multi-simple Support)

  • 이영신;한창환;김근택;김현수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.568-574
    • /
    • 2000
  • This paper presents the vibration characteristics of a continuous circular cylindrical shell multi-simply supported at arbitrary axial positions for searching design parameters. In this modal test the impulse test method is applied to the excitation of experimental model. Natural frequencies are obtained from the peak points of frequency response function(FRF) through frequency analyzer and vibration behaviors are investigated. FE analysis is performed with ANSYS 5.5 to improve the reliability of experimental results. Their results are compared with experimental results. The effect of dynamic characteristics is analyzed for the number of support point on the shell.

  • PDF

LNG Pilot 탱크의 동특성 실험 (Fundamental Experiment of Dynamic Response for LNG Pilot Tank)

  • 임윤묵;김문겸;조경환;박수용
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.489-496
    • /
    • 2003
  • Korea Gas Corporation has recently constructed a LNG pilot tank with 1, 000㎥ capacity in Incheon, Korea. The main objective of this pilot tank construction is to accumulate field data under different operating conditions for the future use in design procedure, construction, and maintenance. As the part of the project, a field dynamic test, so-called modal test, is performed to obtain the dynamic characteristics of the pilot tank. This paper describes the instrumentation and measurement Process used in the testing. From the measured Frequency Response Functions (FRFs), resonant frequencies and corresponding mode shapes of the tank are extracted and provided. Also, these results are compared to those calculated from a finite element model. The change of dynamic characteristics of the pilot tank due to the effect of internal fluid and the possible structural deterioration will be investigated in near future.

  • PDF

육상시추용 드릴링 추진체의 실증시험 데이터를 활용한 전산구조해석에 관한 연구 (A Study on the Computational Structural Analysis Using the Field Test Data of Onshore Drilling Mud Motor)

  • 박성규;김승찬;권성용;신철순
    • 한국산업융합학회 논문집
    • /
    • 제25권4_2호
    • /
    • pp.603-609
    • /
    • 2022
  • Bottom hole assembly(BHA) is a key component of the drilling system, consisting of various components and tools(including the drill bit and mud motor) which operate at the bottom of the wellbore and physically drill the rock. This paper investigates the dynamic characteristics of the mud motor which is a drilling propulsion tool. And computational structural analysis is performed to calculate the von-Mises stress and the safety factor of components constituting the mud motor. In this process, the field test data of onshore drilling are used for analysis.

구조물-가진기 상호작용에 의한 공진주파수 변동에 대한 해석 (Analysis on the Measured Natural Frequencies Due to the Structure-Exciter Interaction)

  • 한상보
    • 대한기계학회논문집A
    • /
    • 제20권7호
    • /
    • pp.2108-2117
    • /
    • 1996
  • The purpose of this paper is to investigate the influence of the exciter attached for the measurement of natural frequencies when extracting the frequency response functions of the test structure in experimental modal analysis. The procedure is first to model the attached exciter as an additional degree of freedom system and next to verify the suggested model by experimentally extracting the natural frequencies of the test structure with various values of exciter mass, stinger stiffness and attachment position of the exciter on the test structure. It is concluded that as additional degree of freedom system which includes the natural frequency of the exciter itself and axial stiffness of stinger should be considered to quantatively define the coupling effects of structure-exciter interaction on the measured natural frequencies. It is not the mass of the exciter itself but the coupling effect of the additional degree of freedom mass-spring system consisting of exciter body and armature coil that characterizes the natural frequency deviation. Therefore, when the natural frequency of this additional mass-spring system is outside of the test frequency range, the coupling effect of structure-exciter interaction can be minimized.

Evaluation on bridge dynamic properties and VIV performance based on wind tunnel test and field measurement

  • Yang, Yongxin;Ma, Tingting;Ge, Yaojun
    • Wind and Structures
    • /
    • 제20권6호
    • /
    • pp.719-737
    • /
    • 2015
  • Full scale measurement on the structural dynamic characteristics and Vortex-induced Vibrations (VIV) of a long-span suspension bridge with a central span of 1650 m were conducted. Different Finite Element (FE) modeling principles for the separated twin-box girder were compared and evaluated with the field vibration test results, and the double-spine model was determined to be the best simulation model, but certain modification still needs to be made which will affect the basic modeling parameters and the dynamic response prediction values of corresponding wind tunnel tests. Based on the FE modal analysis results, small-scaled and large-scaled sectional model tests were both carried out to investigate the VIV responses, and probable Reynolds Number effects or scale effect on VIV responses were presented. Based on the observed VIV modes in the field measurement, the VIV results obtained from sectional model tests were converted into those of the three-dimensional (3D) full-scale bridge and subsequently compared with field measurement results. It is indicated that the large-scaled sectional model test can probably provide a reasonable and effective prediction on VIV response.

토션빔액슬 성능 평가를 위한 해석 모델 검증에 관한 연구 (A Study on the Simulation Model Verification for Performance Estimation of Torsion Beam Axle)

  • 최성진;박정원;전광기;이동재;최규재;박태원
    • 한국자동차공학회논문집
    • /
    • 제14권2호
    • /
    • pp.107-113
    • /
    • 2006
  • The torsion beam axle type is widely used in the rear suspension for small passenger cars due to low cost, good performance, etc. To develop the torsion beam axle, it is necessary to estimate the characteristics of rear suspension from the design process. The characteristics estimation of the torsion beam axle is performed using FEM, dynamic simulation and is verified the real test. In this study, the natural frequency and roll stiffness of the torsion beam axle were measured by FEM, and the reliability of the FE model was evaluated according to the comparison of test data. This study presents a unique method for the finite element modeling and analysis of the torsion beam axle. The results of the FEA were verified using test data.