• Title/Summary/Keyword: Modal Test

Search Result 715, Processing Time 0.025 seconds

Vibroacoustic Analysis of RazakSAT using SEA (통계적 에너지 해석을 이용한 RazakSAT 의 음향진동 연성해석)

  • Kang, Myung-Seok;Bae, Jeong-Seok;Kim, Jong-Un;Choi, Woong;Woo, Sung-Hyun;K.Kim, Young-Key
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.953-956
    • /
    • 2005
  • The vibroacoustic analysis has been carried out on the RazakSAT qualification model which was developed by SI and ATSB. Statistical energy analysis was used for the analysis and the results was compared with acoustic test results. The equipments of the RazakSAT are simplified as uniformly distributed mass on the panels in the SEA model. According to the comparison of the analysis and test results, SEA is useful estimation of the response in high frequency region and the results are valid when the assumption of equipartition of modal energy is agreed.

  • PDF

An Experimental Approach and Improvement of Buzz, Squeak and Rattle Noise from a Seat (차량 시트의 BSR Noise에 대한 시험적 고찰 및 개선)

  • Jeon, Jun-Sig;Kim, Byung-Hoon;Bang, Byung-Ju;Jang, Ik-Guen;Ji, Sung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.675-679
    • /
    • 2006
  • Today, the interior noise perceived by the occupants is an important factor in the design of automotive interior assemblies. Buzz, Squeak and Rattle Noises in a Seats are one of the major concerns mentioned above. In this study, the terms 'Buzz, squeak and rattle' were defined as the noise originating from structural vibrations in an assembly. And, the BSR noise of vehicle seat was investigated and the improvement of BSR noise level was confirmed though the structural treatment based on the structural analysis results from the modal and sound intensity of seat.

  • PDF

Nondestructive Evaluation of Railway Bridge by System Identification Using Field Vibration Measurement

  • Ho, Duc-Duy;Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.527-538
    • /
    • 2010
  • This paper presents a nondestructive evaluation approach for system identification (SID) of real railway bridges using field vibration test results. First, a multi-phase SID scheme designed on the basis of eigenvalue sensitivity concept is presented. Next, the proposed multi-phase approach is evaluated from field vibration tests on a real railway bridge (Wondongcheon bridge) located in Yangsan, Korea. On the steel girder bridge, a few natural frequencies and mode shapes are experimentally measured under the ambient vibration condition. The corresponding modal parameters are numerically calculated from a three-dimensional finite element (FE) model established for the target bridge. Eigenvalue sensitivities are analyzed for potential model-updating parameters of the FE model. Then, structural subsystems are identified phase-by-phase using the proposed model-updating procedure. Based on model-updating results, a baseline model and a nondestructive evaluation of test bridge are identified.

Automated data interpretation for practical bridge identification

  • Zhang, J.;Moon, F.L.;Sato, T.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.433-445
    • /
    • 2013
  • Vibration-based structural identification has become an important tool for structural health monitoring and safety evaluation. However, various kinds of uncertainties (e.g., observation noise) involved in the field test data obstruct automation system identification for accurate and fast structural safety evaluation. A practical way including a data preprocessing procedure and a vector backward auto-regressive (VBAR) method has been investigated for practical bridge identification. The data preprocessing procedure serves to improve the data quality, which consists of multi-level uncertainty mitigation techniques. The VBAR method provides a determinative way to automatically distinguish structural modes from extraneous modes arising from uncertainty. Ambient test data of a cantilever beam is investigated to demonstrate how the proposed method automatically interprets vibration data for structural modal estimation. Especially, structural identification of a truss bridge using field test data is also performed to study the effectiveness of the proposed method for real bridge identification.

Structural and Dynamic Analysis of Three-Axis Road Simulator (3축 로드 시뮬레이터의 구조 및 동적 해석)

  • 황성호;김화진;박창수;최경락
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.105-111
    • /
    • 2003
  • The three-axis road simulator is the test equipment which can simulate the standardized road conditions for the durability evaluation of automotive components such as suspensions. The road load data are collected and acquired from a vehicle test, and then these data are used to simulate road load conditions by the road simulator which consists of hydraulic actuators, link mechanism and servo controller. The link mechanism must be designed in consideration of the dynamic effect and interference during three axes motions in order to generate accurate motions. In this paper, the structural and kinematic analysis of the link mechanism is performed, and these results can be used for developing the three-axis road simulator. The three-axis road simulator provides considerable savings in cost, development time, and testing risk during developing automotive components.

Study on the Vibration of Diesel Engine Generator of Drill Ship (드릴쉽 디젤엔진 발전기의 진동에 관한 연구)

  • Jin, Bong-Man;Park, Hyung-Sik;Kong, Yong-Mo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.502-508
    • /
    • 2009
  • To obtain high power, diesel engines continuously increase combustion pressure and mean effective pressure each cylinder, and the excitation sources and noisy sources are increased, too. Moreover, to reduce the costs, shipyards make hull structures weaker than before. As above reasons, it is more difficult to control the vibration phenomenon nowadays. In this study, it was investigated why diesel generator sets reached the vibration allowable limits during the FAT and heavy vibration phenomenon of diesel generator sets using ODS test during onboard tests. Also, it is found out the stiffness of deck and common bed using the test result of their structural impedance. To find out the vibratory characteristics of diesel generator sets, model tests were carried out. From the sensitivity analysis after above tests, it was selected points to be reinforced and studied troubleshooting to solve heavy vibration phenomenon of diesel generator sets.

Flutter Analysis Model Tuning of KC-100 Aircraft with the Ground Vibration Test Results (지상진동시험결과를 이용한 KC-100 항공기의 플러터 해석모델 보정)

  • Paek, Seung-Kil;Choi, Yong-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.191-195
    • /
    • 2011
  • The airframe ground vibration tests were conducted on the KC-100 aircraft according to the regulation requirement, KAS 23.629(a)(2) and the modal characteristics for the target modes were measured. To make FE model tuning, a design sensitivity approach with engineering judgment was implemented using MSC/Nastran and Attune, a genetic algorithm based parameter optimization software. Based on the comparison between initial prediction and test results, design variables such as beam cross-sectional properties and spring stiffnesses were devised. As the results, the correlation of the FE model to the GVT results was made appropriately, meeting the goal of matching the target frequencies within 5%.

  • PDF

An Experimental Study onthe Endurance Characteristics of the Dynamic Absorber for Vibration Reduction of 4WD Vehicle's Powertrain (4륜구동 자동차의 동력기관에서 진동저감을 위한 동흡진기의 진동내구에 대한 실험적 연구)

  • 사종성;김찬묵
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1166-1172
    • /
    • 1999
  • This paper is the experimental study on the endurance characteristics of the dynamic absorber for the vibration reduction of the 4WD(4 Wheel drive) vehicle's powertrain. Employing the vehicle speed, natural frequencies of damper, modal testing results of powertrain and the weighting factor, the improved endurance test conditions are suggested to enlarge the life time of the dynamic absorber. The test results show that the life time of the dynamic absorber for Z-direction(up and down) has no problems, but the characteristics of X-direction (fore and after) will be sensitive to endurance characteristics of dynamic absorber.

  • PDF

Free Vibration Analysis of the Cantilevered Circular Cylindrical Shells Combined with Circular Plates at Axial Positions (원판이 결합된 외팔 원통셸의 고유진동 특성)

  • 임정식;이영신;손동성
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.331-345
    • /
    • 1997
  • A theoretical formulation for the analysis of free vibration of clamped-free cylindrical shells with plates attached at arbitrary axial position(s) was completed and it was programed to get the numerical results which yield natural frequencies and mode shape of the combined system of the plate and the shells. The frequencies and mode shapes from theoretical calculation were compared with those of commercial finite element code, ANSYS. In order to validate the theory, modal test was also performed by impact test and FFT analysis. The results shows good agreement with those of ANSYS and test results in frequencies and mode shapes. The method developed herein is likely to be used for the analysis of the free vibration of the clamped-free circular cylindrical shells with any kinds of lids such as hollow circular plates, conical shells, spherical shells, or semi-spherical shells.

  • PDF

The Effect of Temperature, Frequency and Microstructure on Fatigue Crack Propagation in Ti-6A1-4V Alloy (Ti-6A1-4V 합금의 피로거동에 미치는 온도, 주파수 및 미세조직의 영향)

  • 김현철;김승한;임병수;김두현;이용태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.198-207
    • /
    • 1996
  • The effect of temperature, frequency and microstructure on fatigue crack propagation property of Ti-6A1-4V alloy has been investigated. The temperatures employed were room temperature, 20$0^{\circ}C$ and 40$0^{\circ}C$. The frequencies were 20Hz and 8 Hz. The microstructures tested were equiaxed and bimodal microstructures. Mechanical properties and fatigue crack growth rates were measured in different test conditions. From the experimental results, following conclusions were obtained. Bimodal microstructure showed superior fatigue crack growth resistance to equiaxed microstructure. Under all test conditions, fatigue crack growth rate increased with test temperature. Wine the frequency decreasing from 20Hz to 8Hz, fatigue crack growth rate increased.

  • PDF