• Title/Summary/Keyword: Modal Structure

Search Result 1,167, Processing Time 0.025 seconds

Health Monitoring System (HMS) for structural assessment

  • e Matos, Jose Campos;Garcia, Oscar;Henriques, Antonio Abel;Casas, Joan Ramon;Vehi, Josep
    • Smart Structures and Systems
    • /
    • v.5 no.3
    • /
    • pp.223-240
    • /
    • 2009
  • As in any engineering application, the problem of structural assessment should face the different uncertainties present in real world. The main source of uncertainty in Health Monitoring System (HMS) applications are those related to the sensor accuracy, the theoretical models and the variability in structural parameters and applied loads. In present work, two methodologies have been developed to deal with these uncertainties in order to adopt reliable decisions related to the presence of damage. A simple example, a steel beam analysis, is considered in order to establish a liable comparison between them. Also, such methodologies are used with a developed structural assessment algorithm that consists in a direct and consistent comparison between sensor data and numerical model results, both affected by uncertainty. Such algorithm is applied to a simple concrete laboratory beam, tested till rupture, to show it feasibility and operational process. From these applications several conclusions are derived with a high value, regarding the final objective of the work, which is the implementation of this algorithm within a HMS, developed and applied into a prototype structure.

Development of a Dynamic Solver Platform for the Next Generation Railway Vehicle (차세대 고속철도 시스템해석을 위한 동역학 솔버 플랫폼 개발)

  • Yoon, Ji-Won;Park, Tae-Won;Jung, Sung-Pil;Park, Sung-Moon;Kim, Young-Guk;Kim, Young-Mo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.913-918
    • /
    • 2008
  • When developing railway vehicle system, investigation of the dynamical stability is essential as a virtual prototyping process. Not only the verification using the commercial analysis tools, systematic analysis using customized tools is also necessary, because these can give other points of view in stability, which is sometimes unable to evaluate in the former one. As a solver platform for customization, it is important to derive basic theory about flexible bodies and build flexible structure, which enables easy module insertion of user-created functions. In the paper, a flexible dynamic analysis system is developed, using absolute cartesian coordinate, modal coordinate and absolute nodal coordinate. Each coordinate system is verified by respective examples for every system. This solver system will play an important role for building the basic platform for analysis system, keeping pace with the concurrent development of the modules, such as wheel-contact force, constraints and user-defined force modules. Using the information from the analysis, the evaluation of the dynamic behavior of the train and its stability analysis will be available.

  • PDF

Displacement estimation of bridge structures using data fusion of acceleration and strain measurement incorporating finite element model

  • Cho, Soojin;Yun, Chung-Bang;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.645-663
    • /
    • 2015
  • Recently, an indirect displacement estimation method using data fusion of acceleration and strain (i.e., acceleration-strain-based method) has been developed. Though the method showed good performance on beam-like structures, it has inherent limitation in applying to more general types of bridges that may have complex shapes, because it uses assumed analytical (sinusoidal) mode shapes to map the measured strain into displacement. This paper proposes an improved displacement estimation method that can be applied to more general types of bridges by building the mapping using the finite element model of the structure rather than using the assumed sinusoidal mode shapes. The performance of the proposed method is evaluated by numerical simulations on a deck arch bridge model and a three-span truss bridge model whose mode shapes are difficult to express as analytical functions. The displacements are estimated by acceleration-based method, strain-based method, acceleration-strain-based method, and the improved method. Then the results are compared with the exact displacement. An experimental validation is also carried out on a prestressed concrete girder bridge. The proposed method is found to provide the best estimate for dynamic displacements in the comparison, showing good agreement with the measurements as well.

Wind-tunnel tests on high-rise buildings: wind modes and structural response

  • Sepe, Vincenzo;Vasta, Marcello
    • Wind and Structures
    • /
    • v.18 no.1
    • /
    • pp.37-56
    • /
    • 2014
  • The evaluation of pressure fields acting on slender structures under wind loads is currently performed in experimental aerodynamic tests. For wind-sensitive structures, in fact, the knowledge of global and local wind actions is crucial for design purpose. This paper considers a particular slender structure under wind excitation, representative of most common high-rise buildings, whose experimental wind field on in-scale model was measured in the CRIACIV boundary-layer wind tunnel (University of Florence) for several angles of attack of the wind. It is shown that an efficient reduced model to represent structural response can be obtained by coupling the classical structural modal projection with the so called blowing modes projection, obtained by decomposing the covariance or power spectral density (PSD) wind tensors. In particular, the elaboration of experimental data shows that the first few blowing modes can effectively represent the wind-field when eigenvectors of the PSD tensor are used, while a significantly larger number of blowing modes is required when the covariance wind tensor is used to decompose the wind field.

A novel multistage approach for structural model updating based on sensitivity ranking

  • Jiang, Yufeng;Li, Yingchao;Wang, Shuqing;Xu, Mingqiang
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.657-668
    • /
    • 2020
  • A novel multistage approach is developed for structural model updating based on sensitivity ranking of the selected updating parameters. Modal energy-based sensitivities are formulated, and maximum-normalized indices are designed for sensitivity ranking. Based on the ranking strategy, a multistage approach is proposed, where these parameters to be corrected with similar sensitivity levels are updated simultaneously at the same stage, and the complete procedure continues sequentially at several stages, from large to small, according to the predefined levels of the updating parameters. At every single stage, a previously developed cross model cross mode (CMCM) method is used for structural model updating. The effectiveness and robustness of the multistage approach are investigated by implementing it on an offshore structure, and the performances are compared with non-multistage approach using numerical and experimental vibration information. These results demonstrate that the multistage approach is more effective for structural model updating of offshore platform structures even with limited information and measured noise. These findings serve as a preliminary strategy for structural model updating of an offshore platform in service.

Hybrid damage monitoring of steel plate-girder bridge under train-induced excitation by parallel acceleration-impedance approach

  • Hong, D.S.;Jung, H.J.;Kim, J.T.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.719-743
    • /
    • 2011
  • A hybrid damage monitoring scheme using parallel acceleration-impedance approaches is proposed to detect girder damage and support damage in steel plate-girder bridges which are under ambient train-induced excitations. The hybrid scheme consists of three phases: global and local damage monitoring in parallel manner, damage occurrence alarming and local damage identification, and detailed damage estimation. In the first phase, damage occurrence in a structure is globally monitored by changes in vibration features and, at the same moment, damage occurrence in local critical members is monitored by changes in impedance features. In the second phase, the occurrence of damage is alarmed and the type of damage is locally identified by recognizing patterns of vibration and impedance features. In the final phase, the location and severity of the locally identified damage are estimated by using modal strain energy-based damage index methods. The feasibility of the proposed scheme is evaluated on a steel plate-girder bridge model which was experimentally tested under model train-induced excitations. Acceleration responses and electro-mechanical impedance signatures were measured for several damage scenarios of girder damage and support damage.

Formal Verification and Performance Analysis of New Communication Protocol for Railway Signaling Systems (철도 신호시스템을 위한 새로운 통신 프로토콜의 성능해석 및 검증)

  • 이재호;황종규;박용진;박귀태
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.6
    • /
    • pp.380-387
    • /
    • 2004
  • In accordance with the computerization of railway signaling systems, the interface link between the signaling systems has been replaced by a digital communication channel. At the same time, the importance of the communication link has become increasingly significant. However, there are some questionable matters in the current state of railway signaling systems in KNR. First, different communication protocols have been applied to create an interface between railway signaling systems although the protocols have the same functions. Next, the communication protocols currently used in the railway fields have some illogical parts such as structure, byte formation, error correction scheme, and so on. To solve these matters, the standard communication protocol for railway signaling systems is designed. The newly designed protocol is overviews in this paper. And the simulation is performed to analysis the performance of data link control for designed protocol. According to this simulation, it is identified that the link throughput of new protocol is improved about 10% and the frame error rate is improved than existing protocol. And it is verified the safety and liveness properties of designed protocol by using a formal method for specifying the designed protocol. It is expected that there will be an increase in safety, reliability and efficiency in terms of the maintenance of the signaling systems by using the designed communication protocol for railway signaling.

Yield displacement profiles of asymmetric structures for optimum torsional response

  • Georgoussis, George K.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.233-257
    • /
    • 2013
  • Given the yield shear of a single-story inelastic structure with simple eccentricity, the problem of strength distribution among the resisting elements is investigated, with respect to minimize its torsional response during a ground motion. Making the hypothesis that the peak accelerations, of both modes of vibration, are determined from the inelastic acceleration spectrum, and assuming further that a peak response quantity is obtained by an appropriate combination rule (square root of sum of squares-SRSS or complete quadratic combination-CQC), the first aim of this study is to present an interaction relationship between the yield shear and the maximum torque that may be developed in such systems. It is shown that this torque may be developed, with equal probability, in both directions (clockwise and anticlockwise), but as it is not concurrent with the yield shear, a rational design should be based on a combination of the yield shear with a fraction of the peak torque. The second aim is to examine the response of such model structures under characteristic ground motions. These models provide a rather small peak rotation and code provisions that are based on such principles (NBCC-1995, UBC-1994, EAK-2000, NZS-1992) are superiors to EC8 (1993) and to systems with a stiffness proportional strength distribution.

Development of Integrated Simulation Tool for Jitter Analysis

  • Lee, Dae-Oen;Yoon, Jae-San;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.64-73
    • /
    • 2012
  • Pointing stability of high precision observation satellites must satisfy the stringent requirements to perform at a designed level. As even a small vibrational disturbance can result in severe degradation of the optical performance, the effects of inorbit vibrational environment on the performance of optical payload must be predicted and analyzed in the design phase in order to ensure that the requirements imposed on the payload are fully met. In this paper, an integrated framework for the evaluation of the performance of optical payloads is developed. The developed simulation tool comprises of the reaction wheel induced disturbance model, state space model of a structure in modal form and Cassegrain reflector model. The performance degradation of the optical system due to jitter is expressed by using modulation transfer function (MTF) and image simulation. Moreover, vibration isolator model is also added to show the effectiveness of using a vibration isolator for the elimination of the effects of jitter in the acquisition of an image.

A Study on the Design of High-speed Parallel Robot (고속 병렬 로봇의 설계에 관한 연구)

  • Kim, Byung In;Kyung, Jin Ho;Do, Hyun Min;Jo, Sang Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1069-1077
    • /
    • 2013
  • These days, the interest of high speed robotic system is increasing because it is very important to get the cost-competitiveness. The parallel kinematic mechanism is more useful than the serial kinematic mechanism. For the reason, the researches on the parallel robot system as a high speed robotic one are have been done by many researchers. In this paper, the research on the design and analysis of the high speed parallel robot has been done by the authors. First, Basic robot structure is designed and modal analysis is studied to get the basic characteristics of the vibrational motion. Second, the harmonic analysis is studied to get the information of the natural frequency in some different designs of the outer-arm of the parallel robot. Finally, actual robot system is designed and implemented and it is confirmed that the analysis results coincide with the experimental results.