• Title/Summary/Keyword: Modal Structure

Search Result 1,167, Processing Time 0.022 seconds

A two-stage damage detection method for truss structures using a modal residual vector based indicator and differential evolution algorithm

  • Seyedpoor, Seyed Mohammad;Montazer, Maryam
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.347-361
    • /
    • 2016
  • A two-stage method for damage detection in truss systems is proposed. In the first stage, a modal residual vector based indicator (MRVBI) is introduced to locate the potentially damaged elements and reduce the damage variables of a truss structure. Then, in the second stage, a differential evolution (DE) based optimization method is implemented to find the actual site and extent of damage in the structure. In order to assess the efficiency of the proposed damage detection method, two numerical examples including a 2D-truss and 3D-truss are considered. Simulation results reveal the high performance of the method for accurately identifying the damage location and severity of trusses with considering the measurement noise.

A multitype sensor placement method for the modal estimation of structure

  • Pei, Xue-Yang;Yi, Ting-Hua;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.407-420
    • /
    • 2018
  • In structural health monitoring, it is meaningful to comprehensively utilize accelerometers and strain gauges to obtain the modal information of a structure. In this paper, a modal estimation theory is proposed, in which the displacement modes of the locations without accelerometers can be estimated by the strain modes of selected strain gauge measurements. A two-stage sensor placement method, in which strain gauges are placed together with triaxial accelerometers to obtain more structural displacement mode information, is proposed. In stage one, the initial accelerometer locations are determined through the combined use of the modal assurance criterion and the redundancy information. Due to various practical factors, however, accelerometers cannot be placed at some of the initial accelerometer locations; the displacement mode information of these locations are still in need and the locations without accelerometers are defined as estimated locations. In stage two, the displacement modes of the estimated locations are estimated based on the strain modes of the strain gauge locations, and the quality of the estimation is seen as a criterion to guide the selection of the strain gauge locations. Instead of simply placing a strain gauge at the midpoint of each beam element, the influence of different candidate strain gauge positions on the estimation of displacement modes is also studied. Finally, the modal assurance criterion is utilized to evaluate the performance of the obtained multitype sensor placement. A bridge benchmark structure is used for a numerical investigation to demonstrate the effectiveness of the proposed multitype sensor placement method.

Vibration measures for local structures through modal tests (모달시험을 통한 국부 구조물 방진대책 수립)

  • Kwon, Jong Hyun;Kim, Mun Su;Yang, Sung Boong;Lee, Won Seok;Lee, Bong Min
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.14-18
    • /
    • 2017
  • The Lashing bridge and radar mast of ship are upright structures so they are generally exposed to excessive vibration. Recently, the use of low speed main engines for improving fuel efficiency has been increasing, and the excitation frequencies of the main engine are moving to the low frequency band. If the excitation frequencies are coincident with the natural frequencies of the local structure, excessive vibration occurs during main engine operating condition. The modal test is to experimentally determine resonance frequency, mode shape, and damping, which are vibration characteristics of a mechanical structure under dynamic external force. Through this study, the vibration characteristics of the structure are obtained by modal tests and the low vibration measure is applied to the local structures.

  • PDF

Dynamic modeling of rubber elements in an engine mount system (엔진 마운트용 고무의 동역학적 모델링)

  • 박석태;정경렬;이종원;김광준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.689-697
    • /
    • 1986
  • In the present work a three degree of freedom modeling of a cylindrical rubber element is studied and its applications to an engine mount system are discussed using a simple test structure. The three degree of freedom model for the rubber mount is composed of three mutually orthogonal springs and dampers jointed at the elastic center of the mount. The test structure is designed and manufactured so simple that its mass center and moment of inertia are accurately and easily obtained. The dynamic properties of each rubber mount, i.e., complex stiffnesses, are experimentally identified using hydraulic exciter and used to predict the modal parameters of the test structure mount system by analytical modal analysis. The predicted modal parameters of the system agree well with those estimated by experimental modal analysis. Hence the three DOF model of the rubber mount is proposed for the practical design of an engine mount system.

Torsional modal testing of a non-ferromagnetic shaft by magnetostrictive patch transducers (자기변형 패치 트랜스듀서를 이용한 비자성 축의 비틀림 모달 테스팅)

  • Cho, Seung-Hyun;Han, Soon-Woo;Park, Chan-Il;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1159-1164
    • /
    • 2006
  • Torsional vibration is an important vibration mode when shafts, cylinders and pipes are considered. However, the modal testing of torsional vibrations is not an easy job to carry out because of the lack of proper transducers. This work presents a new torsional vibration transducer based on the magnetostrictive principle and its application to torsional modal testing. The transducer is so designed as to generate/measure only torsional vibrations excluding other vibration modes such as longitudinal and bending vibrations. The transducer is composed of ferromagnetic patches bonded to a test structure, permanent magnets, and a solenoid. Though patches and magnets are bonded to a structure, torsional vibrations are generated and measured wirelessly by a solenoid encircling a test structure. The proposed transducer works even at considerably high frequencies, say, tens of kilohertz. Furthermore, the transducer can be manufactured at a low price. To check the performance of the proposed method, the torsional modal testing on a hollow aluminum shaft was conducted. The results, such as eigenfrequencies, obtained by the proposed transducer agreed favorably with theoretical results.

  • PDF

comparative Study of Analytical Modal Properties of Instrumentation Cabinet of Nuclear Power Plant (모델링 방법의 차이에 따른 원전계측캐비넷의 동특성 해석 결과 비교분석)

  • 조양희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.186-192
    • /
    • 1999
  • Safety-related equipments of nuclear power plant must be seismically qualified to demonstrate their ability to function as required during and/or after the earthquake, The seismic qualification is usually achieved through analysis and testing. Analysis method is preferably adopted for structurally simple equipments which are easy to be mathematically modeled. However even for relatively complex equipments analysis method is occasionally used for computing the input motion or supporting information for the component test followed. Electrical cabinet is a typical example for which analysis method is combinedly used with test to get modal properties of the enclosing cabinet structure. Usually the structural elements and doors of the cabinet are loosely interconnected with small-size bolts or spot welding. Therefore cabinet-type equipment usually has high and complex nonlinear properties which are not easily idealized by simple practical modeling techniques. in this paper with respect to a typical cabinet-type structure(instrumentation cabinet of nuclear power plant) a comparative study has been performed between three different state-of-the -art modeling techniques: lumped mass model frame model and FEM modal. Form the study results it has been found that modal properties of the cabinet-type structure in the elastic behavior range can be reasonably computed through any type of modeling techniques in the practice with slight modification of model properties to get better accuracy. However it needs additional modeling techniques to get reasonable results up to nonlinear range.

  • PDF

Torsional Modal Testing of a Non-ferromagnetic Shaft by Magnetostrictive Patch Transducers (자기변형 패치 트랜스듀서를 이용한 비자성 축의 비틀림 모달 테스팅)

  • Cho, Seung-Hyun;Han, Soon-Woo;Park, Chan-Il;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.879-885
    • /
    • 2006
  • Torsional vibration is an important vibration mode when shafts, cylinders and pipes are considered. However, the modal testing of torsional vibrations is not an easy task to carry out because of the lack of proper transducers. This work presents a new torsional vibration transducer based on the magnetostrictive principle and its application to torsional modal testing. The transducer is so designed as to generate/measure only torsional vibrations excluding other vibration modes such as longitudinal and bending vibrations. The transducer is composed of ferromagnetic patches bonded to a test structure, permanent magnets, and a solenoid. Though patches and magnets are bonded to a structure, torsional vibrations are generated and measured wirelessly by a solenoid encircling a test structure. The proposed transducer works even at considerably high frequencies, say, tens of kilohertz. Furthermore, the transducer can be manufactured at a low price. To check the performance of the proposed method, the torsional modal testing on a hollow aluminum shaft was conducted. The results, such as eigenfrequencies, obtained by the proposed transducer agreed favorably with theoretical results.

A Study for The Comparison of Structural Damage Detection Method Using Structural Dynamic Characteristic Parameters (구조 동특성 파라미터를 이용한 구조물 손상 탐색기법 비교 연구)

  • Choi, Byoung-Min;Woo, Ho-Kil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.3 s.120
    • /
    • pp.257-263
    • /
    • 2007
  • Detection of structural damage is an inverse problem in structural engineering. There are three main questions in the damage detection: existence, location and extent of the damage. In concept, the natural frequency and mode shapes of any structure must satisfy an eigenvalue problem. But, if a potential damage exists in a structure, an error resulting from the substitution of the refined analytical finite element model and measured modal data into the structural eigenvalue equation will occur, which is called the residual modal forces, and can be used as an indicator of potential damage in a structure. In this study, a useful damage detection method is proposed and compared with other two methods. Two degree-of-freedom system and Cantilever beam are used to demonstrate the approach. And the results of three introduced method are compared.

Structure and Vibration Analyses of Low Speed Contra-Rotating Fan Stage with High Aspect Ratio

  • Sah, Supen Kumar;Ghosh, Anup;Mistry, Chetan S
    • International Journal of Aerospace System Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-13
    • /
    • 2021
  • Contra-rotating fan is comprised of two rotors which are rotating in the opposite direction. The fan stages are named rotor-1 and rotor-2. Benefits from the use of contra rotation are in terms of better efficiency and improved thrust to weight ratio. Failure of contra-rotating fan stage blade in-service results in safety risks, repair costs, and revenue losses. This paper focuses on the vibration analysis and one way fluid-structure interaction of high aspect ratio, low speed contrarotating fan rotors. Modal analysis and modal pre-stress analysis of contra-rotating fan rotors were carried out to calculate the natural frequencies, One way fluid-structure interaction (FSI) was carried out where the computational analysis of the blades was performed using ANSYS CFX. The boundary conditions for CFD analysis were considered from the actual experimental velocity flow field at the inlet and pressure outlet. Based on the results obtained from the CFD analysis, the structural analysis such as deformation and Von-Misses stresses was carried out by using the finite element method (FEM) with ANSYS. The results provide necessary guidelines for the safe running of the contra-rotating fan. The analysis also will be helpful to understand the change of flow behavior due to a rotor deformation.

Detection of damage in truss structures using Simplified Dolphin Echolocation algorithm based on modal data

  • Kaveh, Ali;Vaez, Seyed Rohollah Hoseini;Hosseini, Pedram;Fallah, Narges
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.983-1004
    • /
    • 2016
  • Nowadays, there are two classes of methods for damage detection in structures consisting of static and dynamic. The dynamic methods are based on studying the changes in structure's dynamic characteristics. The theoretical basis of this method is that damage causes changes in dynamic characteristics of structures. The dynamic methods are divided into two categories: signal based and modal based. The modal based methods utilize the modal properties consisting of natural frequencies, modal damping and mode shapes. As the modal properties are sensitive to changes in the structure, these can be used for detecting the damages. In this study, using dynamic method and modal based approach (natural frequencies and mode shapes), the objective function is formulated. Then, detection of damages of truss structures is addressed by using Simplified Dolphin Echolocation algorithm and solving inverse optimization problem. Many scenarios are used to simulate the damages. To demonstrate the ability of the algorithm, different truss structures with several multiple elements scenarios are tested using a few runs. The influence of the two different levels of noise in the modal data for these scenarios is also considered. The last example of this article is investigated using a different mutation. This mutation obtains the exact answer with fewer loops and population by limited computational effort.