• Title/Summary/Keyword: Modal Property

Search Result 112, Processing Time 0.023 seconds

Characterization of the wind-induced response of a 356 m high guyed mast based on field measurements

  • Zhe Wang;Muguang Liu;Lei Qiao;Hongyan Luo;Chunsheng Zhang;Zhuangning Xie
    • Wind and Structures
    • /
    • v.38 no.3
    • /
    • pp.215-229
    • /
    • 2024
  • Guyed mast structures exhibit characteristics such as high flexibility, low mass, small damping ratio, and large aspect ratio, leading to a complex wind-induced vibration response mechanism. This study analyzed the time- and frequency-domain characteristics of the wind-induced response of a guyed mast structure using measured acceleration response data obtained from the Shenzhen Meteorological Gradient Tower (SZMGT). Firstly, 734 sets of 1-hour acceleration samples measured from 0:00 October 1, 2021, to 0:00 November 1, 2021, were selected to study the vibration shapes of the mast and the characteristics of the generalized extreme value (GEV) distribution. Secondly, six sets of typical samples with different vibration intensities were further selected to explore the Gaussian property and modal parameter characteristics of the mast. Finally, the modal parameters of the SZMGT are identified and the identification results are verified by finite element analysis. The findings revealed that the guyed mast vibration shape exhibits remarkable diversity, which increases nonlinearly along the height in most cases and reaches a maximum at the top of the tower. Moreover, the GEV distribution characteristics of the 734 sets of samples are closer to the Weibull distribution. The probability distribution of the structural wind vibration response under strong wind is in good agreement with the Gaussian distribution. The structural response of the mast under wind loading exhibits multiple modes. As the structural response escalates, the first three orders of modal energy in the tower display a gradual increase in proportion.

Property Specification Patterns for Modal $\mu$-Calculus (양상 뮤 논리를 위한 속성 명세 패턴)

  • 전승수;권기현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04a
    • /
    • pp.598-600
    • /
    • 2001
  • 본 논문에서는 양상 뮤 논리를 위한 속성 명세 패턴 연구를 통해 시제 논리에 대한 패턴 기반의 단일한 프레임워크를 제시한다. 본 연구에서는 Dwyer의 속성 명세 패턴 분류를 상태(S)와 행동(A)으로 세분화하고 이를 다시 강함(A)와 약함(E)으로 다시 세분했다. 이러한 의미 기반의 계층적 패턴 분류 체계를 통해 양상 뮤 논리의 속성 명세 패턴을 분석했으며 실제 모형 검사기에서 사용된 예제들의 패턴 분류에 적용했다. 그 결과 기존의 분류 체계보다 더 정확한 분류가 가능했을 뿐만 아니라, 속성 명세의 작성 및 이해가 용이하였다.

  • PDF

Vertical Vibration Decrease Effect of Slab in Shear-Wall Structures According to Property and Size of Structural Members (전단벽식 공동주택의 부재 물성치 및 크기 변화에 따른 슬래브 수직진동 저감 효과)

  • Chun Ho-Min;Yoo Seung-Min
    • Journal of the Korean housing association
    • /
    • v.17 no.3
    • /
    • pp.61-69
    • /
    • 2006
  • Vertical vibrations on the slab of buildings are affected by types of vibration sources, transfer paths, and the material property and the size of members. Among these parameters, the vibration sources and the transfer path can not be controlled, but the property and the size of members can be controlled in the phase of design the members. In this study, the vibration responses according to the property and size of members were obtained by using a prediction program based on dynamic-stiffness matrix. Three parameters which are not usually considered as major factors for architecral planning were selected fur these analyses. They are the strength of materials, the thickness of wall and the thickness of slab. The ground vibration source located near a building was used as vibration input data in the analyses. This study has its originality on presenting appropriate property and size of structural members in order to reduce vertical vibration of slab in shear-wall structures. Analysing the results from the vibration estimation program according to the variations of parameters, the appropriate ratio among the sizes of structural members were proposed. From these results, the vibration level on the slab which is not constructed yet would be predicted and the vibration peak level can be reduced or shifted into the desirable frequency range. Therefore, the vertical vibration could be controlled in the phase of designing buildings.

Determination of dielectric property of subsurface by dispersive guided GPR wave (레이다파의 분산성 가이드 현상을 이용한 지하 물성 계산)

  • Yi, Myeong-Jong;Endres, Anthony L.;Kim, Jung-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.25-30
    • /
    • 2006
  • When wet soil overlies dry soil, which can be found in the infiltration test, the radar wave is not attenuated and guided within wet soil layer. This phenomenon is known to be the dispersive guided wave and happens when the thickness of upper wet layer is less than or comparable to the wavelength of radar wave. In this study, we have conducted the FDTD modeling and obtained the velocity dispersion curve to identify the dispersive guided wave through F-K analysis. This guided wave can be explained by modal propagation theory and a simple inversion code was developed to obtain the two layer's dielectric constants as well as layer thickness. By inverting the dispersion curve from synthetic modeling data, we could obtain the accurate dielectric constants and layer thickness. Moreover, we could enhance the accuracy by including the higher mode data. We expect this method will be very useful to get the quantitative property of subsurface when the condition is similar.

  • PDF

Design and Implementation of Korean Voice Web Browser (한국어 음성 웹브라우저 설계 및 구현)

  • Jang, Young-Gun;Jo, Kyoung-Hwan
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.5
    • /
    • pp.458-466
    • /
    • 2001
  • This paper is addressed to a design and implementation of Korean voice web browser using voice technologies for controling web browser and selecting contents in the web document, and converting them to voice after HTML analysis. Main feature of this web browser is universal design which considers both of normal person and visual disabled, allows multi-modal interface. As voice interface for visual disabled, it supports tree structure which allows to recognize web document structure easily by only voice guidance regardless of frame usage, can handle all elements described as tag in the web document, identify them as predefined different voice property according to element property. This method gets rid of additional guidance voice for element property without audio style sheet or additional programming effort.

  • PDF

Dynamic Characteristics Analysis of Filament-wound Composite Towers for Large Scale Offshore Wind-Turbine (대형 해상풍력발전용 필라멘트 와인딩 복합재 타워의 동적 특성에 관한 연구)

  • Han, Jeong-Young;Hong, Cheol-Hyun;Jeong, Jae-Hun;Moon, Byong-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.55-60
    • /
    • 2012
  • The purpose of this study is to investigate the buckling load of filament-wound composite towers for large scale wind-turbine using finite element method(FEM). To define material properties, we used both the effective property method and the stacking properties method. The effective properties method is to assume that composite consists of one ply. The stacking properties method is to assume that composite consists of some stacked plies. First, linear buckling analysis of the tower, filament-wounded with angles of [${\pm}30$] was carried out by two methods for composite material properties, the stacking method and the effective method. and FE analysis was performed for the composite towers according to filament winding angles of [${\pm}30$], [${\pm}45$], [${\pm}60$]. FE analysis results using the stacking properties of the composite were in good agreement with the results by the effective properties. The difference between FEM results by material properties methods was approximately 0~2.3% in buckling Analysis and approximately 0~0.6% in modal analysis. And above the angle of [${\pm}60$], there was a little change of buckling load.

Modal Analysis of Filament-wound Composite Towers for Large Scale Wind-Turbine (대형 풍력 발전용 필라멘트 와인딩 복합재 타워의 고유 진동수 해석에 관한 연구)

  • Hong, Gheol-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.73-78
    • /
    • 2011
  • The purpose of this study was to investigate the natural frequency of filament-wound composite towers for large scale wind-turbines using the finite element method (FEM). To define the material properties, we used both the effective property method and the stacking properties method. The effective properties method assumes that a composite consists of one ply. The stacking properties method assumes that a composite consists of several stacked plies. First, a modal analysis of the tower, filament-wound with angles of $[{\pm}30]$, was carried out using the two methods for composite material properties, the stacking method and effective method. Then, an FE analysis was performed for composite towers using filament winding angles of $[{\pm}30]$, $[{\pm}45]$, and $[{\pm}60]$. The FE analysis results using the stacking properties of the composite were in good agreement with the results from the effective properties method. The difference between the FEM and material properties methods was approximately 0~0.6%

Dynamic Property Evaluation of Four-Harness Satin Woven Glass/epoxy Composites for a Composite Bogie Frame (복합소재 대차프레임용 4매 주자직 유리섬유/에폭시 복합소재의 진동특성평가)

  • Kim, Il Kyeom;Kim, Jung Seok;Seo, Sung Il;Lee, Woo Geun
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • In this study, the natural frequency and damping ratio of a four-harness satin woven glass/epoxy composite material are evaluated by means of modal tests and a finite element analysis. To achieve this goal, glass/epoxy beam specimens with different lengths and thicknesses were manufactured via autoclave curing. In the test, the maximum damping ratio was found to occur at the lowest test frequency. As the test frequency increased, the damping ratio decreased exponentially to a critical value. After that value, the damping ratio increased gradually to the maximum test frequency.

Dynamic Analysis of Carbon-fiber-reinforced Plastic for Different Multi-layered Fabric Structure (적층 직물 구조에 따른 탄소강화플라스틱 소재 동적 특성 분석)

  • Kim, Chan-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.375-382
    • /
    • 2016
  • The mechanical property of a carbon-fiber-reinforced plastic (CFRP) is subjected to two elements, carbon fiber and polymer resin, in a first step and the selection of multi-layered structure is second one. Many combination of fabric layers, i.e. plainweave, twillweave, can be derived for candidates of test specimen used for a basic mechanical components so that a reliable identification of dynamic nature of possible multi-layered structures are essential during the development of CFRP based component system. In this paper, three kinds of multi-layered structure specimens were prepared and the dynamic characteristics of service specimens were conducted through classical modal test process with impact hammer. In addition, the design sensitivity analysis based on transmissibility function was applied for the measured response data so that the response sensitivity for each resonance frequency were compared for three CFRP test specimens. Finally, the evaluation of CFRP specimen over different multi-layered fabric structures are commented from the experimental consequences.

Experiments for the Vibration Control of Steel Frame Structure Using Toggle Brace and Lead Rubber Damper (토글가새와 납-고무 제진장치를 적용한 구조물 진동제어 실험)

  • Park, Jung-Woo;Park, Jin-Young;Lee, Wan-Ha;Kim, Ki-Man;Park, Kun-Nok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.171-176
    • /
    • 2011
  • The purposes of the research were to evaluate system performance and response of building structure under external load for full scale modal-testing-tower applied toggle bracing and lead rubber damper(LRD). The dynamic properties of the structure were measured before and after installing damper under harmonic excitation using the AMD and the results were compared. The harmonic excitation condition is to increase 0.01Hz sine sweep signal from 0.49Hz to 0.63Hz. As a result of measuring resonant frequency, before installing damper is 0.55Hz and after installing damper is 0.62Hz. The experimental results after installing damper were also distinguished from simulation results and the main cause of this results is temperature dependency property of rubber material.

  • PDF