• Title/Summary/Keyword: Modal Density

Search Result 142, Processing Time 0.026 seconds

Topology Optimization of Plane Structures under Free Vibration with Isogeometric Analysis (등기하해석법을 이용한 자유진동 평면구조물의 위상최적화)

  • Lee, Sang-Jin;Bae, Jungeun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.6
    • /
    • pp.11-18
    • /
    • 2018
  • Isogeometric concept is introduced to find out the optimum layout of plane structure under free vibration. Eigenvalue problem is formulated and numerically solved in order to obtain natural frequencies and mode shapes of plane structures. For the exact geometric expression of the structure, the Non-Uniform Rational B-spline Surface (NURBS) basis functions is employed and it is also used to define the material density functions. A node-wise design variables is adopted to deal with the updating of material density in topology optimization (TO). The definition of modal strain energy is employed to achieve the maximization of fundamental frequency through its minimization. The verification of the proposed TO technique is performed by a series of benchmark test for plane structures.

Structural modal identification and MCMC-based model updating by a Bayesian approach

  • Zhang, F.L.;Yang, Y.P.;Ye, X.W.;Yang, J.H.;Han, B.K.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.631-639
    • /
    • 2019
  • Finite element analysis is one of the important methods to study the structural performance. Due to the simplification, discretization and error of structural parameters, numerical model errors always exist. Besides, structural characteristics may also change because of material aging, structural damage, etc., making the initial finite element model cannot simulate the operational response of the structure accurately. Based on Bayesian methods, the initial model can be updated to obtain a more accurate numerical model. This paper presents the work on the field test, modal identification and model updating of a Chinese reinforced concrete pagoda. Based on the ambient vibration test, the acceleration response of the structure under operational environment was collected. The first six translational modes of the structure were identified by the enhanced frequency domain decomposition method. The initial finite element model of the pagoda was established, and the elastic modulus of columns, beams and slabs were selected as model parameters to be updated. Assuming the error between the measured mode and the calculated one follows a Gaussian distribution, the posterior probability density function (PDF) of the parameter to be updated is obtained and the uncertainty is quantitatively evaluated based on the Bayesian statistical theory and the Metropolis-Hastings algorithm, and then the optimal values of model parameters can be obtained. The results show that the difference between the calculated frequency of the finite element model and the measured one is reduced, and the modal correlation of the mode shape is improved. The updated numerical model can be used to evaluate the safety of the structure as a benchmark model for structural health monitoring (SHM).

Characterization of the wind-induced response of a 356 m high guyed mast based on field measurements

  • Zhe Wang;Muguang Liu;Lei Qiao;Hongyan Luo;Chunsheng Zhang;Zhuangning Xie
    • Wind and Structures
    • /
    • v.38 no.3
    • /
    • pp.215-229
    • /
    • 2024
  • Guyed mast structures exhibit characteristics such as high flexibility, low mass, small damping ratio, and large aspect ratio, leading to a complex wind-induced vibration response mechanism. This study analyzed the time- and frequency-domain characteristics of the wind-induced response of a guyed mast structure using measured acceleration response data obtained from the Shenzhen Meteorological Gradient Tower (SZMGT). Firstly, 734 sets of 1-hour acceleration samples measured from 0:00 October 1, 2021, to 0:00 November 1, 2021, were selected to study the vibration shapes of the mast and the characteristics of the generalized extreme value (GEV) distribution. Secondly, six sets of typical samples with different vibration intensities were further selected to explore the Gaussian property and modal parameter characteristics of the mast. Finally, the modal parameters of the SZMGT are identified and the identification results are verified by finite element analysis. The findings revealed that the guyed mast vibration shape exhibits remarkable diversity, which increases nonlinearly along the height in most cases and reaches a maximum at the top of the tower. Moreover, the GEV distribution characteristics of the 734 sets of samples are closer to the Weibull distribution. The probability distribution of the structural wind vibration response under strong wind is in good agreement with the Gaussian distribution. The structural response of the mast under wind loading exhibits multiple modes. As the structural response escalates, the first three orders of modal energy in the tower display a gradual increase in proportion.

On Estimating the Distributional Parameter and the Complete Sample Size from Incomplete Samples

  • Yeo, Sung-chil
    • Journal of the Korean Statistical Society
    • /
    • v.20 no.2
    • /
    • pp.118-138
    • /
    • 1991
  • Given a random sample of size N(unknown) with density f(x $\theta$), suppose that only n observations which lie outside a region R are recorded. On the basis of n observations, the Bayes estimators of $\theta$ and N are considered and their asymptotic expansions are developed to compare their second order asymptotic properties with those of the maximum likelihood estimators and the Bayes modal estimators. Corrections to bias and median bias of these estimators are made. An example is given to illustrate the results obtained.

  • PDF

A Study on the Modal Analysis of Suspension Assembly by Finite Element Method (유한요소법에 의한 서스펜션 에셈블리의 모드해석에 관한 연구)

  • 김광식;오재응;조준호;최상렬
    • Journal of KSNVE
    • /
    • v.2 no.3
    • /
    • pp.223-230
    • /
    • 1992
  • Vibration problems in the Hard Disk Drive which is magnetic recording device have been raised gradually while HDD is required high density and low access time. As a typical thing, lateral bending or sway mode of supension causes tracking error, and therefore it is necessary to identify the accurate vibration characteristics of that mode. In this study, as the solution of vibration problem, decoupling sway mode and vicinity mode is dealt with. Shifting sway mode to high frequency region is studied.

  • PDF

Reverberation time evaluation considering the acoustical characteristics of a cabin (선실의 음향학적 특성을 고려한 잔향시간 평가)

  • Choi, Jae-Woong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.837-842
    • /
    • 2000
  • Reverberation time is the well known theory and widely used in commercial apparatus to get reverberation time. However large fluctuation in low frequency region occurs in a small cabin due to superposition of a few modes. This paper investigates this phenomena in terms of modal density in frequency domain and suggests a method to get lower limit of reverberation time using the integration of the time-SPL diagram. The suggestion is confirmed by simulation and shows reasonable results to get lower limit of reverberation time and maximum absorbing power in the cabin.

  • PDF

Estimating the Population Size from a Truncated Sample

  • Yeo, Sung-Chil
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.2
    • /
    • pp.169-185
    • /
    • 2000
  • Given a random sample of size N (unknown) with density f(x│$\theta$), suppose that only n observations which lie outside a region r are recorded. On the basis of n observation, the Bayes estimators of $\theta$ and N are considered and their asymptotic expansions are developed to find the third order asymptotic properties with those of the maximum likelihood estimators and the Bayes modal estimators. The asymptotic m.s.e.'s of these estimators are expressed. An example is given to illustrate the results obtained.

  • PDF

Analysis of Dynamic Characteristics and Improvement of Vibration Table for Expendable Pattern Casting Process (소실모형주조용 진동장치의 동특성 분석 및 개선)

  • 이은경;설진수;이경환;최경환;임경화
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.185-192
    • /
    • 2004
  • Vibration table is required to obtain high packing density in expendable pattern casting process. Packing density. which is an important manufacture factor, depends on the vibration pattern induced by vibration table. In general, circular vibration pattern is recognized as the best pattern. The existing vibration table is investigated to identify current vibration pattern and consider a countermeasure. Modal test is utilized to identify the dynamic characteristics of vibration table, and finite element method is used to propose the improved design. In simulation using finite element method, the position of stiffeners is obtained to satisfy the required dynamic characteristics.

Performance Evaluation Of Vibrating Table for Expendable Pattern Casting Process (소실모형주조용 진동장치의 성능평가)

  • Lee, Eun-Kung;Rim, Kyung-Hwa;Lee, Kyung-Whoan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.160-165
    • /
    • 2002
  • Vibration table is required to obtain high packing density in expendable pattern casting process. Packing density, which is an important manufacture factor, depends on the vibration pattern induced by vibration table. In general, circular vibration pattern is recognized as the best pattern. The existing vibration table is investigated to identify current vibration pattern and consider a countermeasure. Modal test is utilized to identify the dynamic characteristics of vibration table, and finite element method is used to present the improved design.

  • PDF

Fatigue Strength Analysis of Propulsion Shafting System with Two Stroke Low Speed Diesel Engine by Torsional Vibration in Frequency Domain (주파수 영역에서 비틀림진동에 의한 저속 2행정 디젤엔진을 갖는 추진축계의 피로강도 해석)

  • Kim, S.H.;Lee, D.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.416-422
    • /
    • 2007
  • Prime movers in most large merchant ships adapt two stroke low speed diesel engine which has higher efficiency, mobility and durability. However, severe torsional vibration in these diesel engines may be induced by higher fluctuation of combustion pressures. Consequently, it may lead sometimes to propulsion shafting failure due to the accumulated fatigue stresses. Shaft fatigue strength analysis had been done traditionally in time domain but this method is complicated and difficult in analysing bi-modal vibration system such as the case of cylinder misfiring condition. In this paper authors introduce an assessment method of fatigue strength estimation for propulsion shafting system with two stroke low speed diesel engine in the frequency domain.

  • PDF