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ABSTRACT

Given a random sample of size N(unknown) with density f(x | 8), suppose that only n
observations which lie outside a region R are recorded. On the basis of n observations, the
Bayes estimators of 0 and N are considered and their asymptotic expansions are developed
to compare their second order asymptotic properties with those of the maximum likelihood
estimators and the Bayes modal estimators. Corrections to bias and median bias of these
estimators are made. An example is given to illustrate the results obtained.

1. Introduction

In dealing with many lifetime data, obervable data are often restricted to a part of the total(com-
plete) potential data. Among N potential observations, only n remain observable by the result
of the restricting process, while (N-n) are eliminated. The set of such incomplete data is usually
referred to as censored when N is known, and as truncated otherwise.

In this paper, we are concerned with the estimation of distributional parameters and sample
sizes when the sample is truncated. For example, the following life testing situation is considered
by Blumenthal and Marcus (1975) : Suppose that M items with failure density f(x|6) are put
on life test, and that out of these M items there are certain unknown N items with a particular
defect identifiable only after the item fails. If the lifetime of an item with this particular defect
is the variable of interest, then the sample is truncated in that N, the number of missing observa-
tions of lifetime greater than the burn-in or testing period, is unknown. An interesting problem
in such situation is to estimate the number of remaining defective items of a particular type
after an initial burn-in period.

The problem of estimating 6 and N from trucated samples were dealt with in many articles
for various cases. Assuming the exponential distribution for lifetime, Blumenthal and Marcus
(1975) gave results for the estimation of 8 and N and also discussed the second order asymptotic
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properties of the estimators considered. Dahiya and Gross(1973) discussed the problem of estima-
ting 6 and N from a truncated Poisson sample, where all the observations assuming the zero
are missing. Blumenthal, Dahiya, and Gross(1974) studied the same problem with emphasis
on the second order properties of the estimators of 8 and N. For truncated continuous samples,
the articles on estimating N include Johnson (1962) and Marcus and Blumenthal (1974) who
limited their attention to the completely known distributions. In the discrete case, other articles
on estimating 6 and N are found in Sanathanan (1972) for the multinomial sample, in Feldman
and Fox (1968), Draper and Guttman (1971), and Blumenthal and Dahiya (1981) for the binomial
distribution, in Blumenthal and Sanathanan (1980) for the inverse binomial sampling. For the
case of general distribution, Sanathanan (1977) gave a result for the asymptotic distribution
of the maximum likelihood estimators (m.l.e.’s) of # and N from truncated samples. The
asymptotic properties of the m.1l.e.’s and Bayes modal estimators of § and N were further
studied by Blumenthal (1977) for comparing asymptotic biases of estimators, by Watson and
Blumenthal (1980) for controlling mean squared error, and by Blumenthal (1982) for bias reduc-
tion.

All of the above work were concerned with the m.I.e.’s of 6 and N and their modifications,
especially Bayes modal estimators. Asymptotic expansions have been obtained and second order
asymptotic properties such as bias and mean squared error (m.s.e) have been studied in a
restricted class of Bayes modal estimators. However, the Bayes estimators which minimize the
expected loss, especially the posterior means which result from the squared error loss function,
have not been examined yet. For complete samples, Gusev (1975, 1976) obtained the results
about asymptotic expansions for the Bayes estimator.

In this article, we consider the Bayes estimators of 8 and N on the basis of truncated samples
and examine their asymptotic properties with the m.1l.e.’s and the Bayes modal estimators.
In Section 2, we briefly review the previous results about asymptotic expansions of the m. l.e.,
the Bayes modal estimator as well as the Bayes estimator of the distributional parameter for
the case of complete samples. In Section 3, extending the results given in Section 2, we develope
the asymptotic expansions of these estimators for 8 and N from truncated samples. From asympto-
tic expansions, we give expressions of the bias corrections and the median bias corrections of
these estimators. In Section 4, we present an example to illustrate the results given in Section
3. Finally, in Section 5, we give some concluding remarks.

2. Complete Samples

Let X, *+*, Xy be a random sample of size N with density f(x|6) (with respect to (w.r.t.)
a o-finite meausre ), where the values of x are in a sample space ¥ and 0 is in a real valued
parameter space ©. Consider some available estimators 8’ s for 8. If as is often the case, 8’s
are asymptotically equivalent in the sense of usual limitng distribution theory, we may want
to know more details about the asymptotic properties such as the asymptotic biases and mean
squared errors and to find the corrections to the biases or median biases for 6°s. all of these
properties can be resolved by the asymptotic expansions such as expansions of random variables,
moments, and distributions. For estimators of 8, we consider the m.1l.e., the Bayes modal
estimator (or the “modified” m.1.e.), and the Bayes estimator. For Bayes modal and Bayes
estimators, we assume that € has the prior density function n(6). Then the likelihood function
is given by
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1x10)= [T Gx1®) 2.1
i=1

and the posterior likelihood is expressed as

h(01x) o« 1.(x(8) (2.2)
where I.(x10)=n(®) I1(x10) (2.3)
We assume that f(x10) and n(6) are smooth functions which allow continuous differentiations

w.r.t. 6. Let G, Gn, andAé\s denote the m. l.e., the modified m.1.e., and the Bayes estimator
of O respectively. Then 6, and 6. are obtained by solving

dlog 1(x|0) -
0= | =% Sk (2.4)
ae 9=éo i=1
and
olog 1.(x10) N “ ”
o= S8 X = % S(x18) +{(B) (2.5)
69 =8, i=1
respectively, where
_ olog f(x18) _ f(x|0)
S(x10)= 0 T (2.6)
_ologn(®) (O
and §(0)= YRR 2.7
and prime notations indjcate differentiation w.r.t. 6.
On the other hand, @ is obtained by
Gim J6n(6) 1(x(0) do (2.8)
~ [ n(0) 1(x18) do ’
where the integral is taken over ©®.
First, consider a stochastic expansion of the form
A 1 1
=6+ —= A +—— B+ON¥ .
=0 \/ﬁ A N B+O(N™¥%) (2.9

where A and B are polynomials in certain sums of i.1. d. random variables, which will be specified

on later.
In order to express the coefficients A and B for 6, Om» and 6s, we introduce the following

notations. Let
Lijk:Eg[Si(S’)j(S”) k:]
=fSi(S,)j(S,,)k £ (2.10)



Estimating the Complete Sample Size 121

where the integral is taken over %, and the arguments x and du(x) are omitted from the notation
unless needed to avoid ambiguity. Trailng zero’s are omitted so that Lp=L;, etc. Similarly,
let

1 N i o Nif e K ik
Zu= —= [ S(8,Y(S))"~NL"] (2.11)
z

/N

where 5,=5(X,10), S,=S(X,10), etc.
Usually, we encounter only Zi, Zu, and Zo. From elementary calculation, we see that

E(Z3) =0 and Var(Zy) =V,
where
Vuk= Laga— (Lﬁk)2 (2. 12)

As Pfanzagl (1973) indicated, under suitatble regularity conditins such as interchange of integ-
rals and derivatives, we see that

Li=0, Lat+L:=0, Luxt+3Lut+Ls=0,
Iq 2Lu+Ls, Lu La+Lin+Le etc. (2. 13)

Now, the coefficeients A and B in (2.9) for 6, 6. and & are

A=2Z/L,
As=Z.=A,
Bi=L. 4 ZZo+ Z Lo "Loa/2} (2.14)
B.=Bo+Va Bs=Bot+vatvs
where §=4(9)
Vo= Val(0) =C/L, (2.15)
and va=vs(6) =Lon/2L".

We note that it requires a variety of regularity conditions and a great deal of care in bounding
remainder terms to justify that § allows the form (2.9) with (2.14) for 6 and to justify the
formal manipulation to go from (2.9) to moments expansion or Edgeworth expansion. Qur purpose
is to explore what can be learned in a formal way about asymptotic properties of an estimator
from asymptotic expansions rather than to examine the mathematical justification of these manipu-
lations. References will be given for the latter.

Note that from (2.9) with (2.14), we see that 6—6=Z,/Ls/N which converges stochastically
to zero, hence consistency follows 1mmed1ately, and /N(6—0)=Z,/1L,+B/ v/N. Since B has
a legitimate limiting distribution, B/ \/_ —0 and the central limit theorem applied to Z: show
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that \/ﬁ (6—9) is asymptotically normal with mean 0 and variance L,™'. Hence 6, G, and 6
are all asymptotically equivalent in the first order sense. We note that the stochastic expansion
yields a limiting distribution and stochastic covergence results as an easy by-product.

From (2.14), we find that

Oo— B=va/N+O(N¥?) (2.16)
fs— B, =vs/N+O(N"¥%) (2.17)
G~ &= (vat+vs) /N+O(N"?) (2.18)

Thus, for asymptotic approximations, we may regard 6 and 6 as adjusted m.1l.e.’s given
by

O = O+ Va/N

6 4+ Gatie)/N (2.19)
where v=v.(0,) and vs(&.). ’ (2.20)

Next, from (2.9) the form of the moments expansion for 0 is expressed as
E(6)=6+b/N+O0(N*?) (2.21)

where b=E(B) can be regarded as the asymptotic bias of 6. From (2.14) the bias terms b’s

in (2.21) for &, 6., and & are given by
b.=E(By) =L"2(Lu+ Low/2)
ba=E(Bx) =bo+ Vn
bBZE(BB) =bot Vatvs.

(2.22)

We notice that E(A,)=0. From (2.22), the bias-corrected versions of @, 6, and s are given
by

6,=6,—bs/N
0= 60— (bo V) /N (2.23)
6= Gy— (b.+Va+0) /N,

where Bo=.bo(01). We note that these bias-corrected estimators will be unbiased up to order

O(N™.
On the other hand, we consider the Edgeworth expansion for the distribution of  such

that
P(/NL.(6—- 8) <x) =®(x) +¢(x)D(x)/y/N+O(N™), (2.24)
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where ®(x) is the c.d.f. of the standard normal distribution,
o(x) is the p.d.f. of the standard normal distribution.
D(x) is the polynomial of degree 2 such that D(x) =d+ex’

The coefficients d and e in D(x) for 6, 6n, and 6 are given by

d0= Vo\/L_z € (L3— Lom) /61123/2
dm = do— Vm\/fz

ds=do— (vt w)y/Le (2.25)
€= €n= €os

where
vo=1,(6) =Ls/6Ls". (2.26)

Pfanzag] (1973) defined an estimator  as being median unbiased of order O(N™) if | F(0)—1/2 |
is O(N™). o A
Thus, the median unbiased versions of 6,, 6., and 6, are given by

6=, + v./N
On=Gut (Vo— V) /N (2.27)
6= s+ (Vo— Va—8)/N,

where v,=w(8,). We note that these median unbiased estimators will be unbiased up to order
O(N™.

We have been concerned here only with the expansions of order O(N™) to correct the asymtotic
biases or median biases of the estimators considered in this paper. For general expansions of
order O(N™*) and for regularity conditions which allow these expansions with rigorous argume-
nts, the relevant articles, for example, are found in Chibisov(1972a, 1972b, 1973) Gusev(1975,
1976), and Pfanzagl (1973). For less mathematically sophisticated arguments about the asymptotic
expansions and approximations of the Bayes estimators, the references are found in Ghosh and
Subramanyam(1974) and Lindley (1961, 1980), etc..

3. Truncated Samples

Our view of truncated samples was described in Section 1. Formally, given a random sample
Xi» X2 -+, Xn, of size N with density f(x]8), where x €% and § € ©, suppose that only
the n observations in a region R(=%—R) are recorded, and the remaining (N—n) are lost.
However, we do not even record the fact that these (N-n) observations were in R, hence N
is an unknown parameter. On the basis of this truncated observations, we wish to estimate
both 6 and N and to study the asymptotic properties of the estimators for 9 and N.
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3.1 Estimation of 0 and N

If we assume for notational convenience that X1, Xz» ***» X. are in R, and X.+1, ***, Xy are
in R, we see that the likelihood function is expressed as

1(x,n18,N)=04(n(8, N)I(x10,1), (3.1)
where

1:(n10,N)= <ID qp* (3.2)
and L(x18, W= ]] g(x16), (3.3)

i=1

with p=p(@=PXe R), ¢=q(@=1-p, and

g(x10)= {f(x|9)/q, x €R

0 , X€R (3.4)

We note that (3.1) expresses the likelihood as the product of the likelihood for n and the
conditional likelihood of the observed x’s given n, and (3.2) expresses the binomial distribution
for n representing the number of observations falling in R. To obtain the Bayes modal and
the Bayes estimators of 8 and N, we assume that @ has the prior density n(#), # €6 and
N has the uniform prior given by w(N) =1/M, 1<N<M, if there is an upper bound on N (other-
wise, we use the improper prior w(N)=1 for all N). As Blumenthal(1977, 1982), Draper and
Guttman (1971), and others considered, we assume that 8 and N are independent apriori.
The posterior likelihood is then given by

h(eyNIXy n)oo lm(X,ﬂle;N)a (3- 5)
where

lm(x,n|09 N) =ll(n199 N) lz.m(xl ey N) (3- 6)
and

bom(x168, n) =n(0)(x)6,n) (3.7

One method of estimating 6 and N is given by maximizing first either the conditional likelihood
L(x16, n) or the modified conditional likelihood L ~(x16, n) w.r.t. 6 and then maximizing
L(ni6, N) w.r.t. N. The resulting estimators are referred to either the conditinal m.1.e.’s
@ and N. or the modified conditional m.1l.e.”s 6. . and N. .. Alternatively, we can maximize
either the likelihood I(x, n|6, N) or the modified likelihood lu(x, ni6, N) w.r.t. 6 and N,
simultaneously. This gives rise to either the unconditional m. 1.e;’s 6. and N. or the modified
unconditional m.1.e.’s 6, . and N, Thus, @, 6. a f., and 6. . are obtained by solving

0= £ §(xi6) (3.8)
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0= 3"51 $(%1 6. ) +L(6m) (3.9)
2 n
=1 q(é‘u)) (3- 10)
0= 5(xi6,.) +U(6,.) (N- (él)’ +2(6,.) (3.11)
where D
16(C") = (3.12)
. _gxie {0 p
S(x10) = cx10) - 1x10) + . (3.13)
and N=N(®=[n/a], §=q(O), (3.14)

where [ - ] is the greatest integer function.
On the other hand, the Bayes estimators of 6 and N are given by

{on(8) L(x16,n) (Zh(ni6,N)) do

es:f (8 L(x16,n) (Zh(n 6,N)) d6 (3.15)

and
[n(0) L(x16,n) (T Nu(nig,N)) db

" (0 Lx16m (= L6 N) db (3.16)

where the integral is taken over ® and the summation is taken over the range of N, and /i
and I, are given by (3.2) and (3.3), respectively. We note that & and Ni will not have simple
closed forms and some approximations will be used on later.

For the purpose of developing asymptotic expansions, Blumenthal (1977, 1982) treated N
as a continuous parameter, and hence N is obtained by solving

O:alog ll(x9n|e9 N)/ aN

N
=log p(O+ _ = 1/ (3.17

Using the Euler-McLaurin formula for = (1/1) and expanding log(1+x) in a Taylor series
for 0<x<1, Blumenthal (1977) obtained N=n/g— 1/2+0(n™"). For asymptotic purpose, we
take the definition of N as

=n/q—1/2 (3.18)

for any 6. We note that (3.18) is simply a linear approximation to n/d, whch is the discrete
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solution to N. Using (3.18), we see that (3.10) and (3.11) can be expressed as

0

z 8(x16)-UB)/2 (3.19)

and

0= X S§xi16.0) —Uw)/2+L(Byn) (3.20)

its-

3.2 Asymptotic Expansions for 9
First, we consider the conditional stochastic expansions of 6, given n, of the form

- 1 1
=0+ —= A+ B+0u™¥?). .
6=6 \/HA o B+0@m™*) (3.21)

In order to develop asymptotic expansions from truncated samples, we define La and Z; as
(2.10) and (2._ 11) with S, n, and g in place of S, N and f, respectively, where the integral
is taken over R, e.g.

L:ﬁ@;Z=§§J¢Eem.

We denote the conditional expectation, given n, by E®, and reserve the symbol E for the uncondi-

tional expectation.
We note that the regularity conditions imposed on f(x|6) such as interchange of integrals
and derivatives will continue to hold for g(x|6) which is defined on a smaller sample space
R. Thus, all relations given in Section 2 will be applied with the appropriate substitutions. For
Lg, we still have the same relations as (2.13), e. g.s Li=0, Lu+lx=0, etc..
Thus, from (2.14), the coefficients A and B in (3.21) for 6. and 6. . are

A..=A=Z/L,
B=L, % (Z.Zu+Z?L, 'Loa/2) (3.22)
Be,n=Bc+ Vi

where Vo= V(@) =¢/L.. (3.23)

For convenience, we take the same notations v's used in Section 2. )
Using (3.19) and (3.20) in place of (2.5), from the expressions of An and B for 6a in
(2.14), we see that the coefficients A and B in (3.21) for 6. and 8. . are

Au.mzAu::Zl/I:Z
B.=B.+w. (3.24)

B...=B.+v.+ va,
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where
v=v(0)=-U(9)/2L. (3.25)

For stochastic expansion of &, we note that f,. is obtained by solving (3.20) which results
from the modified likelihood (3.6) and (3.18). Thus, from (2.17), we obtain

A

6—6a=w/n+0(m™), (3.26)
where

w=(6) = Lo/ 217" (3.27)
Hence, the coefficients As and Bs in (3.21) for 6 are

As=Z/1,,  Bs=Bi .t s (3.28)
From (3.22), (3.24), and (3.28), we find that

6..n— 6. = va/n+0(n"¥?)
6.— 8. =v/n+0(n"¥?) (3.29)
Bun— 0. =(w+va)/n+0(n"¥2)

G— 8. = (vt vat ) /n+0(m™2).

Thus, for asymptotic approximations, we may regard 9:,..,, b, é.,m, and G as adjusted estimators
of 0. given by

>

m . G+ Vi/n
6 ~ +v/n (3.30)
bn ~ 6+ (%t Vo)/n
s ~ G+ (V+ Yt ) /n,

where
Va=va(6), %=w(8), and %=w(6)

Next, from (3.21), the form of the moments expansion for 8 is expressed as

E*(6)=6+b/n+0(n™*?), (3.3D

where b=E"(B) is the conditional asymptotic bias of §, given n. From (3.22), (3.24) and
(3.28) the conditinal bias terms b’s in (3.31) for 6°s are
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b=E"(B) =L *(Lu+Lw/2)
be o =E"(B,m) =bt vn
b.=E"(B.)=b.+w,

bus n=E"(B,,n) =bcF+ vt v

(3.32)

be=E"(Bs) =bct vi+ vt .

We notice that E(A.)=0. From (3.32), the bias-corrected versions of § s are

e:,m= é::o m (Bc+ &m)/n

8.=8,— (b.+w)/n (3.33)

0= 0,0 n— (be+ v+ wm)/n

&= 85— (be+ v+ Vot %) /n,

where
be=b.(A).

On the other hand, for the conditional Edgeworth expansion of the distribution of b, given

n, we rewrite (2.24) as
Po(y/nLa(6— ) <x10) =B(x) + \/iﬁ 6D +0(nD, (3.30)

where ®(x), ¢(x), and D(x) are defined as (2.24). Using the results of (2.25) with additional
term w., we obtain the coefficients d and e in D(x) for §'s as

d=vvL. e=(Le—Lo)/6L" (3.35)
den=dc™ Vo \/f:
d.=d.:—v, \/f:

dom=dc— (w+v) VLo
d=d—(nt+vatw) VI

eB':eu_m:eu:ec_m:ec?

(3.36)

where

ve=v.(0)= L/6Lx (3.37)
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Thus, the median unbiased versions of §°s are

6.=06.+v./n
0..0= 0wt (V:— V) /n
6= 0,4+ (:—v.)/n (3.38)

9u,m= é‘u‘m+ (‘;C- “;Il—' V‘m)/n
=G+ (%= Vs~ Y+ Vo) /n
where v.=v.(8.).

Now, we consider the unconditional expansions for 8. To express the unconditional stochastic
expansion of 8 in terms of N, namely

R 1 . 1 .
=0+ ——= A+ —B+O(N* .
09\/NA NBO(N) (3.39)

we use the standardized variable Y given by

y= n—Ngq
v'Npq

which is asymptotically normal. Substituing (3.40) for n in (3.21), expanding and collecting
terms, we see that

A=A/ va=Z/1.\/qa, B=q'(B—AYyp/2) (3.4D

(3.40)

Thus, the coefficients A and B in (3.38) for 6, ms 6 Oum and G can be obtained by (3.41)
with A and B given in (3.22), (3.24) and (3.28), respectively. From (3.39) with (3.41),
we see that \/ N(6-6) is asymptotically normal with mean 0 and variance (Qf/z)—l.

The unconditional moments expansion for 6 in terms of N, has the form

E(§)=6+b/N+O(N"*2) (3.42)

where b=E(B) is the unconditional asymptotic bias of 6. Since Y is uncorrelated with A and
B, we see that

b=b/q, (3.43)
where b is given by (3.32) for §'s.

On the other hand, from (3.34), for the unconditional form of the Edgeworth expansion
in terms of N, Blumenthal(1982) obtained

P(y/Nas (4— 6) <x) = () + —\/ﬁ o)D) (3.44)
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where d. and e. in D.(x) =d.+ex’ are given by (3.35). Thus, the unconditional form of the
Edgeworth expansions for the distributions of &s can be expressed as

P(/NaL, (6-6) <) = () + ﬁ 60D, (3.45)

where the coefficients d and e in D(x) for @.m 6. 6.n and G are given by (3.36)

3.3 Asymptotic expansions for N

In (3.18), expanding qf@" in a Taylor series with the use of (3.21) for 6, the conditional
stochastic expansion for N, given n, is written as

N=nq'-y/na—B—0(n"), (3.46)
where
a=Aq q? (3.47)
B={Bq'+A%q"/2—q¥/2)} - ¢ +1/2.
Thus, from (3.22), (3.24) and (3.28), the terms a and B in (3.46) for N’s are
a.=Aq'q”?
0B O, m = 0o = Ole, = Olc
B={B.q'+Aq"/2—q¥/q)} - q2+1/2
Be.n=PBc+ pu (3.48)
Bu=PB:+p.
Bo.n=PBct put pu
Bs=B:+ put pntps,
where
P=Vq'q % Pn=Vu@'q% Pe=Vsq'q (3.49)
From (3.48), we find that
New—N.=—p.+0@n™"?)
N.~N=—p,+0(n"?) (3.50)
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~

Nun—N.=—(p,+pa) +0(n"?)

~

Ne—N.= — (p.+patpe) +0(n ")

ThuAS, for asymptotic approximations we may regard Nc_m N, Nu,m, and N; as adjusted estimators
of N. given by

2>

en=Ne— P

=~ Pu

aNe— (put ) (3.51)
NoaN.— (putpntpo)s

Z»
70

~
urss

=2)

where
bmz pm(éc)Q f’uz pu(éc), f)B: pB(éc) .

From (3.46), the conditional moments expansion of N, given n, has the form

E'(N)=nq'—g— 0, (3.52)
where
g=E"(B)
={bq + L. (q"/2—q¥/Dlq*+1/2. (3.53)

We notice that E*(a)=0, E"(B)=b, and E(Aﬁ)——:fj‘.
From (3.48), the bias terms g’s in (3.52) for N’s are

g={bq' +1.7(q"/2—q¥}q2+1/2

Z,m=gT Pm

g=g+p (3.54)
g.n=gt+putpn

=g+ put pntps.

For the unconditional stochastic expansion for N, substituting (3.40) for n in (3.46), expanding
and collecting terms, we see that

N=N-a&/N—B+O(N"¥) (3.55)
where a=a+v/q —Yv/p/q=Aq'q¥*~Y/p/q
B=B+aYy/p /2 (3.56)
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={Bq'+A*(q"/2— ¢/ Qla*+Ag'q Y V/p/2
Thus, from (3.22), (3.24), and (3.28), the terms & and B in (3.55) for N's are
&=A ¢ ¢¥~Y\/p/q
0= O, m = 0= Cc,n = Qc
B={B.q'+AXq/2~q*/Plg*+ Aq'q*+Aq'q*Y /p/2

Bc,m= Bc+ pm
=B+ pu (3.57)

o

o= Bet Put P

Bs=PBc+ put put ps

>l

Since Y is uncorrelated with A and B, we find that E(&) =0 and Var(&)=q*/L.q’+p/q. Thus,
from (3.55) with (3.56), we see that (N—N)/ /N is asymptotically normal with mean 0 and
varince q'*/L.¢*+p/a.

From (3.55) with (3.56), the unconditional moments expansion for N is expressed as

EN)=N—g+0(N™"), (3.58)

We notice that the bias term in (3.58) is exactly the same as in (3.52). Thus from (3.54),
the bias-corrected versions of N's are

N.=N.+g
N.=N.+p.+p. (3.59)
N o=N. o+ pet put po
No=Ns+ pet put put Prs
where
g=2(0), p.=p(8), Ppu=pa(8),
and ps=ps(Q).

Now, we turn our attention to Edgeworth expansions.
Defining

V.= /oL, R—N) / /N(q*+pel) (3.60)
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Blumenthal (1982) obtained

P{V.<x}=®(x) + ¢l ¢(x) / v/Nq(q*+ ¢®pLo)*

X [G,+qpg.+x*(—Go+q?/ql.) g.] (3.61)
where

G,=p(p—q)/6+q?% (¢ L) —q°Ls/6¢[s (3.62)

~

For Edgeworth expansions of the distributions of other estimators N’s than N., let V. be
defined as (3.60) with N. in place of N.. From(3.61), we find that

P{V.<x}=P{V.<x}+ v.q'\/I_d (%)

Vv Na(q*+¢ple)

_ pa Vi 0
=P{V.<x}+ NG+ gl X (3.63)

Setting x=0 in (3.60) and (3.63), we see that the median unbiased versions of N’s are

~

Ne—pe

N.
New=N. o= pct pa

N.=N.—p.+p. (3.64)
Nu,o=No o= pet put pa

Ne=Ns— e+ pu+t pnt po,

where p.=p.(8)).

4. An example

In order to illustrate the results given in Section 3, we consider a truncated Poisson sample

studied in Dahiya and Gross(1973). Let a random variable X have the Poission distribution
with the density function

~8 gx

0
<1 x=0,1,2, == 5 6>0 (4.1

f(x19= =

Consider a truncated random sample consisting of n observations from (4.1) where all observa-
tions for which x=0 are missing. Let n, be the number of sample observations for which X=x,
and let n= X, n, where K is the largest observed value of X. Dahiya and Gross (1973)
considered the case in which the complete sample size N(=n+n,) is an unknown constant,
but in whith n is assumed to be a random variable. They obtained N. as an estimator of N,
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and hence fi.. Under the same situation considered in Dahiya and Gross(1973), assuming the
conjugate prior on 6, Blumenthal, Dahiya, and Gross (1978) obtained N, and Nu'm and investigated
the second order asymptotic properties of these estimators. Using the general results given in
Section 3, we examine their work with our new estimators @ and Ns. From (3. 1) (3.2) and
(3.3), we find that

I(x, n16,N)=U(n|6,N).(x16,N) (4.2
where

L6, N)=(") gp* 4.3)
and 1(x16, N)=(p/q)“ﬁl(9*/x!)"‘, 4.4
with

p=px=0)=e"", q=1—-p

As Blumenthal, Dahiya, and Gross (1978) considered, we assume that 6 has the gamma prior
density given by

rs+l es e-ro

TetD 6>0; r>0, s>—1 «.5)

n(@)=

and N has the uniform prior given by
y(N)=1/M, 1<N<M, (4.6)

where M is an upper bound on N. Then, we find that

p=e”, q=1—e™
S(x10)=x/6—1/q

Sx19)=—x/6"+p/q 4.7
S0 =2x/6*—p(1+p)/q

U@=-1, «O=s/6 —r
Thus, from (3.8)—(3.11), we see that

0= % n(x/8—1/9) (4.8)

0= Z n.(x/B.a=1/Q)+(s/8.0=1) (4.9)
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0= % n(x/B— 1/~ (N-1/g) (4.10)
0= 2 n.(x/Bn=1/0) = (N—1/Q) +(s/4,a—1) (4.1D)

From (4.8)—(4.11), we find that

6

1—e-é =w/n

B n=(w+s)/(r+0/q

G=w/N, (4.12)
e = (w+s)/(N, nt1).

X
‘where w= 21 XNye
=

And 6 is expressed as (3.15), where L, L, and n(6) are given by (4.3), (4.4), and (4.5),
respectively. Since G will not have a simple colsed form, the approximate formula given in
(3.30) will be used for computation. For estimators of N, we have

N=N(§=[n/q(§)] (4.13)
for appropriate estimator §. From the definition of L given in Section 3, we find that

L.=(6q)(q—Ap)
L=(0*¢® - [+ bp{e(p+1) —3q}] (4.14)
Lo=q'- {2/6°—p(1+p)/q}

Using the definitions given in Section 3, we obtain the following quantities :

V= —2”(;‘—!;2910 (4.15)
=~ (5/0-1) (4.16)
W= "é(]%ép_)z . {q3—:;iz p(1+p} (4.17)
v ;&l—i—w - [+ Opq{8p+1) —3q}] (4.18)
be - . {qu”—ﬁz- p(1+p) (1+29)} (4.19)

~ (q—6p)° 6
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ey (4.20)

o= 25 (5/0-D (4.2D)

ps=m - : p(1+p)} (4.22)

g=q {bp—L, (p/2+p/ D} +1/2 (4.23)

o= E%; Gt ape)» (4.26)
where

G.=p(p—q)/6+p¥/2¢L,— p’L/6¢°Ls (4.25)

Thus, the approximate solutions of @.n, 6. 6 ,m and 6 are expressed as (3.30), where w,
Vo and w are given by (4.15)—(4.17) with 8, p=p(d) and 4= q(G) in place of 6, p and
g, respectively. The bias-corrected and median unbiased versions of § s are expressed as (3.33)
and (3.38), where v. and b. are given by (4.18) and (4.19) with . D, and § in place of
6, p, and q, respectively. On the other hand, the approximate solutions of Nc . N,, » and
Nz are obtained from (3.51), where p.,, pm and ps are given by (4.20) — (4. 22) with 6, b,
and q in place of 6, p, and q, respectively. The bias-corrected and median unbiased versions
of N’s are given by (3.59) and (3.64), respectively, where g. and p. are given by (4.23)
and (4.24) with 8, p, and q in place 6, p, and q respectively.

Now, for a numerical illustration of these estimators of 8 and N, we use the data given in
Dahiya and Gross(1973) referring to an epidemic of cholera in a village in India :

X 1 2 3 4 Total
n. 32 16 6 1 55

where x is the number of cholera cases in a house and n. denotes the number of houses with
x cholera cases. In addition to the 55 households having at least one cholera case, 168 other
households had no cases. Let N be the total number of households which were infected. Then
N=no+n, where the observed value of n is 55 and n, is the number of households which were
infected but did not have any active case of cholera. Our problem is to estimate n,. Dahiya
and Gross(1973) showed that

4.=0.970, N.=89, and hence f..=N.—n=34.

Blumenthal, Dahiya, and Gross(1978) chose r=1/3 and s=1 to minimize the maximum asympto-
tic bias of N, .. With this choice of r and s, they obtained Nu=Nu_m=87, and hence M= = flow,m=
32. Since 6=0.970, p=0.3791, and §=0.6209, from (4.14) —(4.25), we find the following
quantities -
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L.=0.6770, 1,=0.8546,  La=—0.0943
%=0.7385 7%W=1.0304,  #%=—0.1028

~

v.=0.3108 b.=—0.6558, p.

0.7262
Pn=1.0132, ps=—0.1011, g.=-—1.7580

G,=0.1550,  p.=—0.0424

Thus, from (3.30), (3.33), (3.38), the estimates of 0 are as follows :

A ~ A

6. .=0.9887, 9,=0.9834, B0 n=1.0022,
6:=1.0003, 6.=0.9819, 8.=0.9757,

And from (3.51) (3.59) and (3.64), the estimates of N are as follows :

-~ ~

N..=87, N.,=88, N..=87,

~

N:=87, N.=87, N.=89.

Hence, the Bayes estimate of n, is fls=Ns—n=32.

5. Conclusion

In this paper, we have examined the second order asymptotic properties of the Bayes estimators
of © and N. We have given the expressions of the aysmptotic biases and median biases of 0
and N. For asymptotic purpose, we have shown that the Bayes estimators of 8 and N can also
be regarded as adjusted estimators of m.1.e.’s of 6 and N as well as the Bayes modal estimators.

For further research, we will need to examine the mean squared error to control the bias
terms of the Bayes estimators of 8 and N. We will also need Monte Carlo simulation study
to investigate the small sample behavior of the Bayes estimators. We hope that these further
results will be reported in a future time.
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