• 제목/요약/키워드: Modal Assurance Criterion

검색결과 47건 처리시간 0.024초

Structural damage identification based on transmissibility assurance criterion and weighted Schatten-p regularization

  • Zhong, Xian;Yu, Ling
    • Structural Engineering and Mechanics
    • /
    • 제82권6호
    • /
    • pp.771-783
    • /
    • 2022
  • Structural damage identification (SDI) methods have been proposed to monitor the safety of structures. However, the traditional SDI methods using modal parameters, such as natural frequencies and mode shapes, are not sensitive enough to structural damage. To tackle this problem, this paper proposes a new SDI method based on transmissibility assurance criterion (TAC) and weighted Schatten-p norm regularization. Firstly, the transmissibility function (TF) has been proved a useful damage index, which can effectively detect structural damage under unknown excitations. Inspired by the modal assurance criterion (MAC), TF and MAC are combined to construct a new damage index, so called as TAC, which is introduced into the objective function together with modal parameters. In addition, the weighted Schatten-p norm regularization method is adopted to improve the ill-posedness of the SDI inverse problem. To evaluate the effectiveness of the proposed method, some numerical simulations and experimental studies in laboratory are carried out. The results show that the proposed method has a high SDI accuracy, especially for weak damages of structures, it can precisely achieve damage locations and quantifications with a good robustness.

A novel WOA-based structural damage identification using weighted modal data and flexibility assurance criterion

  • Chen, Zexiang;Yu, Ling
    • Structural Engineering and Mechanics
    • /
    • 제75권4호
    • /
    • pp.445-454
    • /
    • 2020
  • Structural damage identification (SDI) is a crucial step in structural health monitoring. However, some of the existing SDI methods cannot provide enough identification accuracy and efficiency in practice. A novel whale optimization algorithm (WOA) based method is proposed for SDI by weighting modal data and flexibility assurance criterion in this study. At first, the SDI problem is mathematically converted into a constrained optimization problem. Unlike traditional objective function defined using frequencies and mode shapes, a new objective function on the SDI problem is formulated by weighting both modal data and flexibility assurance criterion. Then, the WOA method, due to its good performance of fast convergence and global searching ability, is adopted to provide an accurate solution to the SDI problem, different predator mechanisms are formulated and their probability thresholds are selected. Finally, the performance of the proposed method is assessed by numerical simulations on a simply-supported beam and a 31-bar truss structures. For the given multiple structural damage conditions under environmental noises, the WOA-based SDI method can effectively locate structural damages and accurately estimate severities of damages. Compared with other optimization methods, such as particle swarm optimization and dragonfly algorithm, the proposed WOA-based method outperforms in accuracy and efficiency, which can provide a more effective and potential tool for the SDI problem.

Vibration-based damage alarming criteria for wind turbine towers

  • Nguyen, Cong-Uy;Huynh, Thanh-Canh;Dang, Ngoc-Loi;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • 제4권3호
    • /
    • pp.221-236
    • /
    • 2017
  • In this study, the feasibility of vibration-based damage alarming algorithms are numerically evaluated for wind turbine tower structures which are subjected to harmonic force excitation. Firstly, the algorithm of vibration-based damage alarming for the wind turbine tower (WTT) is visited. The natural frequency change, modal assurance criterion (MAC) and frequency-response-ratio assurance criterion (FRRAC) are utilized to recognize changes in dynamic characteristics due to a structural damage. Secondly, a finite element model based on a real wind turbine tower is established in a structural analysis program, Midas FEA. The harmonic force is applied at the rotor level as presence of excitation. Several structural damage scenarios are numerically simulated in segmental joints of the wind turbine model. Finally, the natural frequency change, MAC and FRRAC algorithm are employed to identify the structural damage occurred in the finite element model. The results show that these criteria could be used as promising damage existence indicators for the damage alarming in wind turbine supporting structures.

Modal flexibility based damage detection for suspension bridge hangers: A numerical and experimental investigation

  • Meng, Fanhao;Yu, Jingjun;Alaluf, David;Mokrani, Bilal;Preumont, Andre
    • Smart Structures and Systems
    • /
    • 제23권1호
    • /
    • pp.15-29
    • /
    • 2019
  • This paper addresses the problem of damage detection in suspension bridge hangers, with an emphasis on the modal flexibility method. It aims at evaluating the capability and the accuracy of the modal flexibility method to detect and locate single and multiple damages in suspension bridge hangers, with different level of severity and various locations. The study is conducted numerically and experimentally on a laboratory suspension bridge mock-up. First, the covariance-driven stochastic subspace identification is used to extract the modal parameters of the bridge from experimental data, using only output measurements data from ambient vibration. Then, the method is demonstrated for several damage scenarios and compared against other classical methods, such as: Coordinate Modal Assurance Criterion (COMAC), Enhanced Coordinate Modal Assurance Criterion (ECOMAC), Mode Shape Curvature (MSC) and Modal Strain Energy (MSE). The paper demonstrates the relative merits and shortcomings of these methods which play a significant role in the damage detection ofsuspension bridges.

Reproduction of vibration patterns of elastic structures by block-wise modal expansion method (BMEM)

  • Jung, B.K.;Cho, J.R.;Jeong, W.B.
    • Smart Structures and Systems
    • /
    • 제18권4호
    • /
    • pp.819-837
    • /
    • 2016
  • The quality of vibration pattern reproduction of elastic structures by the modal expansion method is influenced by the modal expansion method and the sensor placement as well as the accuracy of measured natural modes and the total number of vibration sensors. In this context, this paper presents an improved numerical method for reproducing the vibration patterns by introducing a block-wise modal expansion method (BMEM), together with the genetic algorithm (GA). For a given number of vibration sensors, the sensor positions are determined by an evolutionary optimization using GA and the modal assurance criterion (MAC). Meanwhile, for the proposed block-wise modal expansion, a whole frequency range of interest is divided into several overlapped frequency blocks and the vibration field reproduction is made block by block with different natural modes and different modal participation factors. A hollow cylindrical tank is taken to illustrate the proposed improved modal expansion method. Through the numerical experiments, the proposed method is compared with several conventional methods to justify that the proposed method provides the improved results.

Modeling and damage detection for cracked I-shaped steel beams

  • Zhao, Jun;DeWoIf, John T.
    • Structural Engineering and Mechanics
    • /
    • 제25권2호
    • /
    • pp.131-146
    • /
    • 2007
  • This paper presents the results of a study to show how the development of a crack alters the structural behavior of I-shaped steel beams and how this can be used to evaluate nondestructive evaluation techniques. The approach is based on changes in the dynamic behavior. An approximate finite element model for a cracked beam with I-shaped cross-section is developed based on a simplified fracture model. The model is then used to review different damage cases. Damage detection techniques are studied to determine their ability to identify the existence of the crack and to identify its location. The techniques studied are the coordinate modal assurance criterion, the modal flexibility, and the state and the slope arrays.

A multitype sensor placement method for the modal estimation of structure

  • Pei, Xue-Yang;Yi, Ting-Hua;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • 제21권4호
    • /
    • pp.407-420
    • /
    • 2018
  • In structural health monitoring, it is meaningful to comprehensively utilize accelerometers and strain gauges to obtain the modal information of a structure. In this paper, a modal estimation theory is proposed, in which the displacement modes of the locations without accelerometers can be estimated by the strain modes of selected strain gauge measurements. A two-stage sensor placement method, in which strain gauges are placed together with triaxial accelerometers to obtain more structural displacement mode information, is proposed. In stage one, the initial accelerometer locations are determined through the combined use of the modal assurance criterion and the redundancy information. Due to various practical factors, however, accelerometers cannot be placed at some of the initial accelerometer locations; the displacement mode information of these locations are still in need and the locations without accelerometers are defined as estimated locations. In stage two, the displacement modes of the estimated locations are estimated based on the strain modes of the strain gauge locations, and the quality of the estimation is seen as a criterion to guide the selection of the strain gauge locations. Instead of simply placing a strain gauge at the midpoint of each beam element, the influence of different candidate strain gauge positions on the estimation of displacement modes is also studied. Finally, the modal assurance criterion is utilized to evaluate the performance of the obtained multitype sensor placement. A bridge benchmark structure is used for a numerical investigation to demonstrate the effectiveness of the proposed multitype sensor placement method.

Finite element model updating - Case study of a rail damper

  • Kuchak, Alireza Jahan Tigh;Marinkovic, Dragan;Zehn, Manfred
    • Structural Engineering and Mechanics
    • /
    • 제73권1호
    • /
    • pp.27-35
    • /
    • 2020
  • In rail industry, noise reduction is a concern to decrease environmental pollution. The current study focuses on rail damper modeling and improvement of the model through validation with experimental results. Accurate modeling and simulation of rail dampers, specifically tuned rail dampers with layers interconnected by bolt joints, shall enable objective-oriented improvement of their design. In this work, to improve the damper model cone pressure theory is applied in the FE model and the sensitivity analysis is then applied to gradually improve the FE model. The improved model yields higher Modal Assurance Criterion (MAC) values and lower frequencies deviation.

최적화 기법을 이용한 비행체 구조물 동특성 해석 모델의 최신화 연구 (A Study on Updating of Analytic Model of Dynamics for Aircraft Structures Using Optimization Technique)

  • 이기두;이영신;김동수
    • 한국항공우주학회지
    • /
    • 제37권2호
    • /
    • pp.131-138
    • /
    • 2009
  • 해석용 모델의 검증이란 완성된 모델이 실제 제품의 특성을 반영하고 있는지에 대한 확인절차이다. 일반적으로 해석모델작성 시 형상의 단순화 및 비선형특성의 반영에 대한 한계 등으로 공학적 가정을 이용하므로 실제 구조와는 다른 물리적, 기계적 특성을 갖게 된다. 본 연구에서는 순차적 2차계획법(Sequential Quadratic Programming, SQP)을 이용하는 목표달성기법(Goal-Attainment Method)의 다목적 최적화 기법을 이용하여 활공체 날개의 정적 처짐과 고유진동수 차이를 최소화하는 방법으로 구조모델의 최신화를 수행하였으며, 모드형상의 일치성을 정량적으로 판단하기 위하여 Modal Assurance Criterion(MAC)를 이용하였다.

구조물의 진동장 예측 최적센서배치를 위한 유전자 알고리듬 적합함수의 선정 (Selection of Fitness Function of Genetic Algorithm for Optimal Sensor Placement for Estimation of Vibration Pattern of Structures)

  • 정병규;배경원;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제25권10호
    • /
    • pp.677-684
    • /
    • 2015
  • It is often necessary to predict the vibration patterns of the structures from the signals of finite number of vibration sensors. This study presents the optimal placement of vibration sensors by applying the genetic algorithm and the modal expansion method. The modal expansion method is used to estimate the vibration response of the whole structure. The genetic algorithm is used to estimate the optimal placement of vibration sensors. Optimal sensor placement can be obtained so that the fitness function is minimized in the genetic algorithm. This paper discusses the comparison of the performances of two types of fitness functions, modal assurance criteria(MAC) and condition number( CN). As a result, the estimation using MAC shows better performance than using CN.