• Title/Summary/Keyword: Mockup test

Search Result 48, Processing Time 0.027 seconds

Development of a Nuclear Steam Generator Tube Inspection/maintenance Robot

  • Shin, Ho-Cheol;Kim, Seung-Ho;Seo, Yong-Chil;Jung, Kyung-Min;Jung, Seung-Ho;Choi, Chang-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2508-2513
    • /
    • 2003
  • This paper presents a nuclear steam generator tube inspection/maintenance robot system. The robot assists in automatic non-destructive testing and the repair of nuclear steam generator tubes welded into a thick tube sheet that caps a hemispherical or quarter-sphere plenum which is a high-radiation area. For easy carriage and installation, the robot system consists of three separable parts: a manipulator, a water-chamber entering and leaving device for the manipulator and a manipulator base pose adjusting device. A software program to control and manage the robotic system has been developed on the NT based OS to increase the usability. The software program provides a robot installation function, a robot calibration function, a managing and arranging function for the eddy-current test, a real time 3-D graphic simulation function which offers remote reality to operators and so on. The image information acquired from the camera attached to the end-effecter is used to calibrate the end-effecter pose error and the time-delayed control algorithm is applied to calculate the optimal PID gain of the position controller. The developed robotic system has been tested in the Ulchin NPP type steam generator mockup in a laboratory.

  • PDF

An Experimental Study for Preventing the Resonance of Steam Turbine Blade (증기터빈 블레이드의 공진 방지를 위한 실험 연구)

  • 하현천;이동진;류석주
    • Journal of KSNVE
    • /
    • v.11 no.3
    • /
    • pp.410-415
    • /
    • 2001
  • This paper describes an experimental analysis for improving the stability of blade failure due to the vibration resonance, which happens in the low-pressure steam turbine. Some cracks due to high cycle fatigue were found in the blades of a low-pressure turbine after long time operation. Impact test showed that such failure was mainly caused by the resonance. In other words, since one of the natural frequencies of the grouped blade is very close to the excitation frequency of the nozzle, the resonant vibration leads to a large amplitude of displacement and results in a large amount of stress that may cause fatigue failures in the blades. It is interesting that the blade failures occur only at blades neighboring with the nodal points of the natural vibration mode whose natural frequency is close to the nozzle passing frequency. The effective methods for increasing the reliability against the blade vibration are a heightening the fatigue limit of the blade using an advanced material and a removing the resonance away from the operating speed. It is well known that the removal of theresonance could be obtained by the installation of different types of shrouds, wires, and links between the blades as well as by the chance of the number of nozzles. In the present work, two kinds of modification for avoiding the resonance haute been considered; 1) slot-type finger, 2) long span cover. Full-scale mockup tests have been performed in order to confirm the verification for modification in the shop. Test results show that the use of long span cover is very useful to change the natural frequencies of the grouped blade and to avoid the resonance effectively.

  • PDF

The effects of science·job competence through STEAM education based on a Fine Arts among Secondary School Students - Focused on the food design class using 3D printer - (미술교과 중심의 융합인재교육(STEAM)이 중학생의 과학·직업역량에 미치는 영향 - 3D프리터를 활용한 식품디자인수업을 중심으로 -)

  • Kim, Hyo-jung
    • Journal of Communication Design
    • /
    • v.55
    • /
    • pp.20-30
    • /
    • 2016
  • This study was to verify the effect of art-education-oriented integrated human resource education (STEAM) on scientific competence and job competence of middle school students. The theme of the program developed for this study is "food design" using a 3-D printer. The 5 mockup lectures were developed for 237 students in ninth and tenth grades of Y Middle School in Gyeonggi-do Province, and the pre-/post-results were analyzed. As a result of analyzing the competence of STEAM education before and after the program, the job competence of general, science, and food science of students was improved after the program in general. Especially among three sub-areas of scientific competence, the change in component of research shows the most significant change in test statistics. The result of test statistics of food science job competence showed the most significant change among three sub-areas: general, scientific, and food science. This program was developed for on-site to be used for a school lecture, and the program may be reformed or used for different themes.

Experimental Study on Temperature-Moisture Combined Measurement System for Slope Failure Monitoring (사면붕괴 모니터링에 사용되는 온도-함수비 복합계측시스템 개발에 관한 실험적 연구)

  • Nam, Jin-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.33-39
    • /
    • 2015
  • Recently, the event of slope failure has been occurring frequently due to rapid climate changes and broad development of infrastructures, and the research for establishment of monitoring and prevention system has been an attentive issue. The major influence factors of slope failure mechanism can be considered moisture and temperature in soil, and the slope failure can be monitored and predicted through the trend of moisture-temperature change. Therefore, the combined sensing technology for the continuous measurement of moisture-temperature with different soil depths is needed for the slope monitoring system. The various independent sensors for each item (i.e. temperature and moisture respectively) have been developed, however, the research for development of combined sensing system has been hardly carried out. In this study, the high-fidelity sensor combing temperature-moisture measurement by using the minimized current consuming temperature circuit and the microwave emission moisture sensor is developed and applied on the slope failure monitoring system. The feasibility of developed monitoring system is verified by various experimental approaches such as standard performance test, mockup test and long-term field test. As a result, the developed temperature-moisture combined measurement system is verified to be measuring and monitoring the temperature and moisture in soil accurately.

Population Stereotypes as a Perceiver's Cognitive Structure on Manipulating Devices for Daily Use (일상생활용 장치 작동에 따른 지각자의 인지구조에 대한 집단고정관념)

  • Jung, Hwa-Shik;Kang, Jeong-Il;Jung, In-Ju;Shin, Hong-Cheul;Jeong, Dong-Hyuk;Jung, Yu-Jin
    • The Journal of Korean Physical Therapy
    • /
    • v.20 no.4
    • /
    • pp.71-78
    • /
    • 2008
  • Purpose: This study standardizes the position and direction of devices based on general user expectations and stereotypes. Population stereotypes are cognitive structures that contain the perceiver's knowledge, beliefs, and expectations about human groups. In this paper, the stereotypes that people typically expect when manipulating 'cylindrical key-in-knob locks' and 'lever-type water faucet handles' were investigated and data regarding their expectations were collected. Methods: Two sets of 600 participants, between 13 and over 60 years old, were recruited for the experiment. Each group was evenly subdivided into six age groups. Each participant was presented with cylindrical door locks mounted on a miniature door and actual lever-type water faucet handles mounted on a mockup sink. Results: If the cylindrical lock was positioned 'vertically,' 59.2% of the participants expected the device to be locked, and if the lever type faucet handle was positioned 'up,' 63.0% of the participants expected the device to be turned on. Thus, daily-use devices should be designed consistent with user expectations of operation. There was a significant difference between genders for manipulating the faucet handle between up and down. Conclusion: A more general stereotype may be defined by repetitive measurements under the same test conditions with fixed time intervals, as well as accounting for people with cognitive problems.

  • PDF

Numerical study of the flow and heat transfer characteristics in a scale model of the vessel cooling system for the HTTR

  • Tomasz Kwiatkowski;Michal Jedrzejczyk;Afaque Shams
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1310-1319
    • /
    • 2024
  • The reactor cavity cooling system (RCCS) is a passive reactor safety system commonly present in the designs of High-Temperature Gas-cooled Reactors (HTGR) that removes heat from the reactor pressure vessel by means of natural convection and radiation. It is one of the factors responsible for ensuring that the reactor does not melt down under any plausible accident scenario. For the simulation of accident scenarios, which are transient phenomena unfolding over a span of up to several days, intermediate fidelity methods and system codes must be employed to limit the models' execution time. These models can quantify radiation heat transfer well, but heat transfer caused by natural convection must be quantified with the use of correlations for the heat transfer coefficient. It is difficult to obtain reliable correlations for HTGR RCCS heat transfer coefficients experimentally due to such a system's size. They could, however, be obtained from high-fidelity steady-state simulations of RCCSs. The Rayleigh number in RCCSs is too high for using a Direct Numerical Simulation (DNS) technique; thus, a Reynolds-Averaged Navier-Stokes (RANS) approach must be employed. There are many RANS models, each performing best under different geometry and fluid flow conditions. To find the most suitable one for simulating an RCCS, the RANS models need to be validated. This work benchmarks various RANS models against three experiments performed on the HTTR RCCS Mockup by the Japanese Atomic Energy Agency (JAEA) in 1993. This facility is a 1/6 scale model of a vessel cooling system (VCS) for the High Temperature Engineering Test Reactor (HTTR), which is operated by JAEA. Multiple RANS models were evaluated on a simplified 2d-axisymmetric geometry. They were found to reproduce the experimental temperature profiles with errors of up to 22% for the lowest temperature benchmark and 15% for the higher temperature benchmarks. The results highlight that the pragmatic turbulence models need to be validated for high Rayleigh natural convection-driven flows and improved accordingly, more publicly available experimental data of RCCS resembling experiments is needed and indicate that a 2d-axisymmetric geometry approximation is likely insufficient to capture all the relevant phenomena in RCCS simulations.

A Study on Virtual Assembly Simulation Using Virtual Reality Technology (가상현실 기술을 이용한 가상 조립 시뮬레이션에 대한 연구)

  • Kim, Yong-Wan;Park, Jin-Ah
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.11
    • /
    • pp.1715-1727
    • /
    • 2010
  • Although a hand haptic interaction which provides direct and natural sensation is the most natural way of interacting with VR environment, the hand haptic interaction has still limitations with respect to the complexity of articulated hand and related hardware capabilities. Particularly, virtual assembly simulation which refers to the verification process of digital mockup in product development lifecycle is one of the most challenging topics in virtual reality applications. However, hand haptic interaction is considered as a big obstacle, because difficulty initial grasping and non-dextrous manipulation remain as unsolved problems. In this paper, we propose that common hand haptic interactions involves two separate stages with different aspects. We present the hand haptic interaction method enables us to stably grasp a virtual object at initial grasping and delicately manipulate an object at task operating by one's intention. Therefore, proposed method provides the robustness using grasping quality and dextrous manipulation using physically simulation. We conducted experiments to evaluate the effectiveness of our proposed method under different display environments -monoscopic and stereoscopic. From 2-way ANOVA test, we show that the proposed method satisfies two aspects of hand haptic interaction. Finally, we demonstrated an actual application of various assembly simulation for relatively complex models.

ITER 블랑켓 일차벽 고유접합법 개발을 위한 표준목업 고열부하 시험

  • Kim, Seok-Gwon;Lee, Dong-Won;Bae, Yeong-Deok;Yun, Jae-Seong;Jeong, Gi-Seok;Hong, Bong-Geun;Jeong, Hyeon-Gyu;Jeong, Yang-Il;Park, Jeong-Yong;Choe, Byeong-Gwon;Jeong, Yong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.275-275
    • /
    • 2010
  • 국제핵융합실험로 (ITER)의 블랑켓 일차벽 조달 자격 획득을 위한 검증시험을 수행하여 1단계를 2009년 완료하였고, 2단계는 2011년 예정으로 진행 중이다. 우리나라는 이미 1단계 검증시험에서 2 개의 일차벽 목업 (First Wall Qualification Mockup ; FWQM)을 제출하여 시험을 성공적으로 통과하였고, 2단계 검증 시험을 위해 semi-prototype 제작 기술 및 시험 기술을 개발 중이다. 블랑켓 일차벽 검증 시험 및 제작 기술을 확보하기 위한 고유접합법 개발을 위해서 표준 크기($80\;mm{\times}80\;mm$)의 목업을 제작하여 국내 고열부하 시험 시설에서 접합 방법의 타당성을 확인하였다. 표준목업은 HIP (Hot Isostatic Pressing) 접합법으로 stainless steel과 Cu 냉각부를 제작하고, 다시 $80\;mm{\times}80\;mm$ Be tile을 HIP 방법으로 냉각부에 접합하여 제작한다. 고유접합법 개발을 위해서 Be과 Cu 냉각부 계면에 Cr($1\;{\mu}m$)/Cu($10\;{\mu}m$), Ti($5\;{\mu}m$)/Cu($10\;{\mu}m$) 층을 코팅하여 Be 접합 성능을 개선하였으며, 기존의 접합 계면과 차별화된 기술을 확보하였다. 표준목업의 전체 크기는 $80\;mmW{\times}80\;mmL{\times}84\;mmH$ 이고, 1차로 총 6개, 2차로 4개를 제작하였으며 제작 과정 및 제작 전후에 파괴검사, 비파괴검사를 수행하여 접합의 건전성을 확인하였다. 제작 완료된 표준 목업은 냉각 관로를 장착하여 국내의 고열부하 시험시설인 KoHLT-1에 장착하여 성능 시험을 수행하였다. 고열부하 시험 시설의 냉각수 조건은, 온도 $25^{\circ}C$(실온), 유량 0.15 kg/sec이고, 고열 부하 조건에서는 0.5, 1.0, $1.5\;MW/m^2$의 screening 시험을 거친 후 1.5 MW/m2에서 cycle 시험을 진행하였다. 각 목업의 고열부하 시험을 마친 후 비파괴 검사의 일환으로 UT(Ultrasonic test) 시험을 수행하여 열부하 시험 전후의 목업 건전성을 확인하였다. 고유접합법을 이용하여 개발한 표준 목업의 고열부하 시험을 통해서 접합법의 타당성 및 건전성을 확인하였고, 향후 블랑켓일차벽 조달 검증 2단계 시험에서 semi-prototype 제작 및 고열부하 시험에 대비하고, ITER 관련 핵심 기술 개발 목표를 달성할 것이다.

  • PDF