• Title/Summary/Keyword: Mobilization of roughness

Search Result 6, Processing Time 0.024 seconds

Roughness Mobilization Characteristics of Artificial Triangular Asperities (인공 삼각 돌출부의 거칠기 발현특성)

  • Hong, Eun-Soo;Choi, Sung-Oong;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.760-767
    • /
    • 2006
  • Underestimation of rock joint shear strength comes from an inadequate consideration of roughness mobilization behavior, which is changed by asperity size as well applied normal load. In this study, we performed rock joint shear tests, and studied the roughness mobilization characteristics related with the scale of normal stress and asperities. Test specimens with artificial triangular asperities were manufactured. The specimens consisted of 3 types, and each type represented unevenness, waviness and total roughness(superposition of unevenness and waviness). The experimental results show that the roughness mobilization characteristics are varied by the scale of normal stress and asperities. Furthermore, the investigation shows that the rate of geometrical component and mechanical component in the total roughness is also varied by the scale of normal stress and asperities. These results suggest that we should consider the roughness mobilization characteristics for the roughness quantification and the shear strength modelling.

  • PDF

A New Quantification Method of Rock Joint Roughness (I) - A Close Assessment of Problems (암석 절리면 거칠기의 정량화에 대한 연구 (I) - 문제점의 규명)

  • Hong, Eun-Soo;Nam, Seok-Woo;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.269-283
    • /
    • 2005
  • To figure out the cause of underestimating the roughness and shear strength of rock joints suggested by numerous researchers, we analyzed roughness mobilization characteristics, characteristics of roughness parameters, effects of sampling interval, and waviness for roughness parameters. It was found out that lack of understanding of the roughness mobilization characteristics, inappropriate applications of roughness parameters, and effect of aliasing provide a main reasons for those problems. Several practical alternatives for improving those problems were suggested. As far as digitizing methods are concerned, we can find that using a 3D scanner can give a relatively effective result. To avoid aliasing, sampling interval should be less than one-quarter of the minimum asperities. As for the quantification of roughness, it was analyzed that the roughness parameter should be classified into two components depending on the scale of roughness to apply the shear strength model. For classifying the roughness, a framework of the criterion was suggested based on the plastic flow concept for the asperity failure, and the basis for proposing a new alternative shear strength model was established.

  • PDF

A New Quantification Method of Rock Joint Roughness (II) - Roughness classification and strength equation - (암석 절리면 거칠기의 정량화에 대한 연구(II) - 거칠기의 구분과 강도식의 제안 -)

  • Hong, Eun-Soo;Cho, Gye-Chun;Kwon, Tae-Hyuk;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.2
    • /
    • pp.183-196
    • /
    • 2006
  • Rock joint roughness obtained from the camera-type 3D scanner was classified into waviness and unevenness. The classification criteria were established in the previous study; digital filtering was used to distinguish one from another. The classified and original profiles were used to produce metal moulds. For accurate machining of the moulds, the WEDM(Wire-cut Electric Discharge Machining) was adopted. Specimens were cast using high strength gypsum, and joint shear tests were performed by varying normal stress from low value to high one. Roughness mobilization characteristics depending on the asperity scale and the applied normal stress were investigated. A new equation was proposed to predict shear strength of rock joint, which can consider the characteristics of roughness mobilization and roughness parameters. The roughness quantification composed of waviness and unevenness was found to be a useful method to predict the joint shear strength.

  • PDF

A New Coefficient for Three Dimensional Quantification of Rock Joint Roughness (암석 절리면 거칠기의 새로운 3차원 정량화 계수)

  • Park, Jung-Wook;Lee, Yong-Ki;Song, Jae-Joon;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.106-119
    • /
    • 2012
  • Roughness of rock joint has generally been characterized based upon geometrical aspects of a two-dimensional surface profile. The appropriate description of joint roughness, however, should consider the features of roughness mobilization at contact areas under normal and shear loads. In this study, direct shear tests were conducted on the replicas of tensile fractured gneiss joints and the influence of the shear direction on the shear behavior and effective roughness was examined. In this procedure, a joint surface was represented as a group of triangular planes, and the steepness of each plane was characterized using the concepts of the active and inactive micro-slope angles. The contact areas at peak strength which were estimated by a numerical method showed that the locations of the contact areas were mainly dependent on the distribution of the micro-slope angle and the shear behavior of joint was dominated by only the fractions with active micro-slope angles. Therefore, a three-dimensional coefficient for the quantification of rock joint roughness is proposed based on the distribution of active micro-slope angle: active roughness coefficient, $C_r$. Comparison of the active roughness coefficient and the peak shear strength obtained from the experiment suggests that the active roughness coefficient is the effective parameter to quantify the surface roughness and estimate the shear behavior of rock joint.

A study on the asperity degradation of rock joint surfaces using rock-like material specimens (유사 암석 시편을 사용한 암석 절리면 돌출부 손상 연구)

  • Hong, Eun-Soo;Kwon, Tae-Hyuk;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.303-314
    • /
    • 2009
  • Image analyses for sheared joint specimens are performed to study asperity degradation characteristics with respect to the roughness mobilization of rock joints. Four different types of joint specimens, which are made of high-strength gypsum materials, are prepared by replicating the three-dimensional roughness of rock joints. About twenty jointed rock shear tests are performed at various normal stress levels. The characteristic and scale of asperity degradation on the sheared joint specimens are analyzed using the digital image analysis technique. The results show that the asperity degradation characteristic mainly depends on the normal stress level and can be defined by asperity failure and wear. The asperity degradation develops significantly around the peak shear displacement and the average amount of degraded asperities remains constant with further displacement because of new degradation of small scale asperities. The shear strength results using high-strength gypsum materials can not fully represent physical properties of each mineral particles of asperities on the natural rock joint surface. However the results of this quantitative estimation for the relationship between the peak shear displacement and the asperity degradation suggest that the characterization of asperity degradation provides an important insight into mechanical characteristics and shear models of rock joints.

Roughness Effect on the Residual Shear Characteristics of Jumunjin Sands (거칠기 효과를 고려한 주문진 표준사의 잔류전단강도 특성 분석)

  • Sueng-Won Jeong
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.717-724
    • /
    • 2023
  • Residual shear strength is an important parameter in landslide dynamics and may be considered the critical factor in landslide triggering. Tests were undertaken using Jumunjin sands to examine the effects of smooth and rough surfaces on ring-shear characteristics. Under dense and drained conditions, shear velocities were recorded as 0.01, 0.1, 1, 10, 50, 100 mm s-1, with shear strength increasing with velocity and producing increasingly fine content. Particle fragmentation may thus increase landslide mobilization when the landslide body is mixed with ambient water in channelized flows.