• Title/Summary/Keyword: Mobile surface

Search Result 454, Processing Time 0.041 seconds

Development of Mobile Robot for CAS inspection of Oil Tanker (유조선의 상태평가계획 검사를 위한 이동로봇의 개발)

  • Lee, Seung-Heui;Son, Chang-Woo;Eum, Yong-Jae;Lee, Min-Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.161-167
    • /
    • 2007
  • It is dangerous that an inspector overhauls defects and condition of the inner parts of an oil tanker because of many harmful gases, complex structures, and etc. However, these inspections are necessary to many oil tankers over old years. In this study, we proposed the design of mobile robot for inspection of CAS in oil tanker. The developed CAS inspection mobile robot has four modules, a measurement module of oil tanker's thickness, a corrosion inspection module, a climbing module of the surface on a wall, and a monitoring module. In order to get over at a check position, the driving control algorithm was developed. Magnetic wheels are used to move on the surface of a wall. This study constructed a communication network and the monitoring program to operate the developed mobile robot from remote sites. In order to evaluate the inspection ability, the experiments about performance of CAS inspection using the developed mobile robot have been carried out.

  • PDF

A Study on Obstacle Detection for Mobile Robot Navigation (이동형 로보트 주행을 위한 장애물 검출에 관한 연구)

  • Yun, Ji-Ho;Woo, Dong-Min
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.587-589
    • /
    • 1995
  • The safe navigation of a mobile robot requires the recognition of the environment in terms of vision processing. To be guided in the given path, the robot should acquire the information about where the wall and corridor are located. Also unexpected obstacles should be detected as rapid as possible for the safe obstacle avoidance. In the paper, we assume that the mobile robot should be navigated in the flat surface. In terms of this assumption we simplify the correspondence problem by the free navigation surface and matching features in that coordinate system. Basically, the vision processing system adopts line segment of edge as the feature. The extracted line segments of edge out of both image are matched in the free nevigation surface. According to the matching result, each line segment is labeled by the attributes regarding obstacle and free surface and the 3D shape of obstacle is interpreted. This proposed vision processing method is verified in terms of various simulations and experimentation using real images.

  • PDF

BER Performance Analysis of Intelligent Reflecting Surface NOMA for Strongest Channel Gain User

  • Kyuhyuk, Chung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.84-89
    • /
    • 2023
  • Recently, the sixth generation (6G) networks have become tremendous research topics. Intelligent reflecting surface (IRS) technologies have been envisioned, to increase spectrum and energy efficiency for the fifth generation (5G) mobile networks, towards the sixth generation (6G) communications. In this paper, especially for the strongest channel gain user, we investigate the bit-error rate (BER) of non-orthogonal multiple access (NOMA) systems with intelligent reflecting surface (IRS). First, we derive a BER expression in a closed-form of Q functions. Second, we investigate the BER performance improvement of IRS NOMA systems over NOMA systems versus the power allocation. Moreover, we analyze the BER performance improvement of IRS NOMA systems over NOMA systems versus the number of IRS devices. In results, NOMA equipped with IRS technologies could play an important role in the paradigm shift from 5G mobile networks to 6G mobile networks.

Development of a magnetic caterpillar based robot for autonomous scanning in the weldment (용접부 자동 탐상을 위한 이동 로봇의 개발)

  • 장준우;정경민;김호철;이정기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.713-716
    • /
    • 2000
  • In this study, we present a mobile robot for ultrasonic scanning of weldment. magnetic Caterpillar mechanism is selected in order to travel on the inclined surface and vertical wall. A motion control board and motor driver are developed to control four DC-servo motors. A virtual device driver is also developed for the purpose of communicating between the control board and a host PC with Dual 'port ram. To provide the mobile robot with stable and accurate movement, PID control algorithm is applied to the mobile robot control. And a vision system for detecting the weld-line are developed with laser slit beam as a light source. In the experiments, movement of the mobile robot is tested inclined on a surface and a vertical wall.

  • PDF

Design of a Mobile Robot System for Integrity Evaluation of Large Sized Industrial Facilities (대형 산업설비 안전성 진단용 이동로봇 시스템 설계)

  • Lee Ho-Gil;Ryuh Young-Sun;Son Woong-Hee;Jeong Hee-Don;Park Sangdeok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.595-601
    • /
    • 2005
  • A mobile robot system utilizing NDT (Non-Destructive Testing) method is designed and fabricated f3r automatic integrity evaluation of large sized industrial reservoirs and pipelines. The developed mobile robot can crawl over the outer surface of the industrial facilities even though the shape of the structures is various and unsymmetric. The robot detects defects such as pinholes, cracks and thickness reduction at the wall of the facilities using EMAT (Electro-Magnetic Acoustic Transducer). Image processing technology for weld line detection at the surface of the target and host programs including defect detecting algorithms are also developed. Automation of defect detection for these kinds of large facilities using mobile robots is helpful to prevent significant troubles of the structures without danger of human beings under harmful environment.

A Study on SAR Reduction Method for Mobile Handsets (휴대 단말기의 SAR 저감법에 관한 연구)

  • Hwang Jae-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.833-838
    • /
    • 2005
  • In this paper, we propose SAR(Specific absorption rate) reduction methods based on surface electric field distribution relation for mobile handsets. Proposed the new method that is able to consider improvement of the SAR from the very beginning step of developing the mobile handsets. Analysis of mobile handset with human body(head) using finite element method(FEM). Results of this method, SAR reduced about $50\;\%$.

Contribution of LC material and PI trapping effect to ionic contamination in STN-LCD cells

  • Chen, Rong;Gu, Xi;Gong, X.Y.;Mok, W.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.361-363
    • /
    • 2005
  • The transient current of STN-LCD cells was measured and simulated to characterize ionic behavior in LCD cells. An experiment was performed to investigate the contribution of LC material and PI trapping effect to mobile ions in the LC layer. We observed that most of ions are trapped on the PI surface rather than stay in the LC layer in case of normal STN-LCD, and PI surface favors larger ions in general. A linear correlation of ion density and $V_50$ shift of the Transmission-Voltage (TV) curve between 30Hz and 1kHz at typical ion mobility was found.

  • PDF

Adaptive Formation Control of Nonholonomic Multiple Mobile Robots Considering Unknown Slippage (미지의 미끄러짐을 고려한 비홀로노믹 다개체 이동 로봇의 적응 군집 제어)

  • Choi, Yoon-Ho;Yoo, Sung-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.5-11
    • /
    • 2010
  • An adaptive formation control approach is proposed for nonhonolomic multiple mobile robots considering unknown slipping and skidding. It is assumed that unknown slipping and skidding effects are bounded by unknown constants. Under this assumption, the adaptive technique is employed to estimate the bounds of unknown slipping and skidding effects of each mobile robot. To deal with the skidding effect included in kinematics, the dynamic surface design approach is applied to design a local controller for each mobile robot. Using Lyapunov stability theorem, the adaptation laws for tuning bounds of slipping and skidding are induced and it is proved that all signals of the closed-loop system are bounded and the tracking errors and the synchronization errors of the path parameters converge to an adjustable neighborhood of the origin. Finally, simulation results are provided to verify the effectiveness of the proposed approach.

Application to Stabilizing Control of Nonlinear Mobile Inverted Pendulum Using Sliding Mode Technique

  • Choi, Nak-Soon;Kang, Ming-Tao;Kim, Hak-Kyeong;Park, Sang-Yong;Kim, Sang-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.1-7
    • /
    • 2009
  • This paper presents a sliding mode controller based on Ackermann's formula and applies it to stabilizing a two-wheeled mobile inverted pendulum in equilibrium. The mobile inverted pendulum is a system with an inverted pendulum on a mobile cart. The dynamic modeling of the mobile inverted pendulum was established under the assumptions of a cart with no slip and a pendulum with only planar motion. The proposed sliding mode controller was based upon a class of nonlinear systems whose nonlinear part of the modeling can be linearly parameterized. The sliding surface was obtained in an explicit form using Ackermann's formula, and then a control law was designed from reachability conditions and made the sliding surface attractive to the equilibrium state of the mobile inverted pendulum. The proposed controller was implemented in a Microchip PIC16F877 micro-controller. The developed overall control system is described. The simulation and experimental results are presented to show the effectiveness of the modeling and controller.

A Study on the Surface Roughness Behavior of Reactor Vessel Stud Holes in APR1400 Nuclear Power Plants (APR1400 원자로 용기 스터드 홀의 표면거칠기 거동에 관한 연구)

  • Kim, Dong Il;Kim, Chang Hun;Moon, Young Jun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.62-70
    • /
    • 2019
  • The APR1400 reactor may be operated for a long time under high temperature and pressure conditions, causing damage to the stud holes and causing stud bolts and holes to stick. The present practice is to manually remove the anti-sticking agent and foreign matter remaining in the APR1400 reactor stud hole and to visually check the surface condition of the thread to check the damage status of the threads. In the case of the APR1400 reactor stud holes, manually cleaning the threads increases the risk of radiation exposure and operator's fatigue. To avoid this, the autonomous mobile robot is used to automatically clean the reactor stud holes. The purpose of this study is to optimize the cleaning performance of the mobile robot by looking at the behavior of the surface roughness of the stud surface cleaned by the brush attached to the mobile robot due to changes in brush material, thickness of wire, and rotation speed. A microscopic approach to the surface roughness of the flank is needed to investigate the effects of the newly proposed brush of the autonomous mobile robot on the thread holes. According to this experiment, it is reasonable to use STS brush rather than Carbon one. Optimal operating conditions are derived and the safety of APR1400 reactor stud holes maintenance can be improved.