• Title/Summary/Keyword: Mobile spam filtering

Search Result 8, Processing Time 0.021 seconds

Korean Mobile Spam Filtering System Considering Characteristics of Text Messages (문자메시지의 특성을 고려한 한국어 모바일 스팸필터링 시스템)

  • Sohn, Dae-Neung;Lee, Jung-Tae;Lee, Seung-Wook;Shin, Joong-Hwi;Rim, Hae-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2595-2602
    • /
    • 2010
  • This paper introduces a mobile spam filtering system that considers the style of short text messages sent to mobile phones for detecting spam. The proposed system not only relies on the occurrence of content words as previously suggested but additionally leverages the style information to reduce critical cases in which legitimate messages containing spam words are mis-classified as spam. Moreover, the accuracy of spam classification is improved by normalizing the messages through the correction of word spacing and spelling errors. Experiment results using real world Korean text messages show that the proposed system is effective for Korean mobile spam filtering.

Mobile Junk Message Filter Reflecting User Preference

  • Lee, Kyoung-Ju;Choi, Deok-Jai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.2849-2865
    • /
    • 2012
  • In order to block mobile junk messages automatically, many studies on spam filters have applied machine learning algorithms. Most previous research focused only on the accuracy rate of spam filters from the view point of the algorithm used, not on individual user's preferences. In terms of individual taste, the spam filters implemented on a mobile device have the advantage over spam filters on a network node, because it deals with only incoming messages on the users' phone and generates no additional traffic during the filtering process. However, a spam filter on a mobile phone has to consider the consumption of resources, because energy, memory and computing ability are limited. Moreover, as time passes an increasing number of feature words are likely to exhaust mobile resources. In this paper we propose a spam filter model distributed between a users' computer and smart phone. We expect the model to follow personal decision boundaries and use the uniform resources of smart phones. An authorized user's computer takes on the more complex and time consuming jobs, such as feature selection and training, while the smart phone performs only the minimum amount of work for filtering and utilizes the results of the information calculated on the desktop. Our experiments show that the accuracy of our method is more than 95% with Na$\ddot{i}$ve Bayes and Support Vector Machine, and our model that uses uniform memory does not affect other applications that run on the smart phone.

A SVM-based Spam Filtering System for Short Message Service (SMS) (휴대폰 SMS를 위한 SVM 기반의 스팸 필터링 시스템)

  • Joe, In-Whee;Shim, Hye-Taek
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9B
    • /
    • pp.908-913
    • /
    • 2009
  • Mobile phones became important household appliance that cannot be without in our daily lives. And the short messaging service (SMS) in these mobile phones is 1.5 to 2 times more than the voice service. However, the spam filtering functions installed in mobile phones take a method to receive specific number patterns or words and recognize spam messages when those numbers or words are present. However, this method cannot properly filters various types of spam messages currently dispatched. This paper proposes a more powerful and more adaptive spam filtering system using SVM and thesaurus. The system went through a process of isolating words from sample data through pro-processing device and integrating meanings of isolated words using a thesaurus. Then it generated characteristics of integrated words through the chi-square statistics and studied the characteristics. The proposed system is realized in a Window environment and the performance is confirmed through experiments.

A Normalization Method of Distorted Korean SMS Sentences for Spam Message Filtering (스팸 문자 필터링을 위한 변형된 한글 SMS 문장의 정규화 기법)

  • Kang, Seung-Shik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.7
    • /
    • pp.271-276
    • /
    • 2014
  • Short message service(SMS) in a mobile communication environment is a very convenient method. However, it caused a serious side effect of generating spam messages for advertisement. Those who send spam messages distort or deform SMS sentences to avoid the messages being filtered by automatic filtering system. In order to increase the performance of spam filtering system, we need to recover the distorted sentences into normal sentences. This paper proposes a method of normalizing the various types of distorted sentence and extracting keywords through automatic word spacing and compound noun decomposition.

Implementation of A Mobile Application for Spam SMS Filtering Using Set-Based POI Search Algorithm (집합 기반 POI 검색 알고리즘을 활용한 스팸 메시지 판별 모바일 앱 구현)

  • Ahn, Hye-yeong;Cho, Wan-zee;Lee, Jong-woo
    • Journal of Digital Contents Society
    • /
    • v.16 no.5
    • /
    • pp.815-822
    • /
    • 2015
  • By the growing of SMS phishing victims, applications for processing spam messages are being released in succession. However most spam messages that cleverly modified the content like separating the consonants and vowels are fail to be filtered. In this paper, we implemented an application 'AntiSpam' which is able to identify spam strings in the text message to solve this problem. 'AntiSpam' searches spam strings in the text message by using set-based POI search algorithm, and then calculate the possibility of whether it is spam or not in accordance with the search results. In addition, it catches skillfully disguised spam messages in order to avoid missing the spam filtering. Users, who received a message, can check the result in spam message possibility decision result and the contents of the message and they can choose how to handling the message.

Implementation of a Spam Message Filtering System using Sentence Similarity Measurements (문장유사도 측정 기법을 통한 스팸 필터링 시스템 구현)

  • Ou, SooBin;Lee, Jongwoo
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.1
    • /
    • pp.57-64
    • /
    • 2017
  • Short message service (SMS) is one of the most important communication methods for people who use mobile phones. However, illegal advertising spam messages exploit people because they can be used without the need for friend registration. Recently, spam message filtering systems that use machine learning have been developed, but they have some disadvantages such as requiring many calculations. In this paper, we implemented a spam message filtering system using the set-based POI search algorithm and sentence similarity without servers. This algorithm can judge whether the input query is a spam message or not using only letter composition without any server computing. Therefore, we can filter the spam message although the input text message has been intentionally modified. We added a specific preprocessing option which aims to enable spam filtering. Based on the experimental results, we observe that our spam message filtering system shows better performance than the original set-based POI search algorithm. We evaluate the proposed system through extensive simulation. According to the simulation results, the proposed system can filter the text message and show high accuracy performance against the text message which cannot be filtered by the 3 major telecom companies.

Personalized Mobile Junk Message Filtering System (사용자 맞춤형 스팸 문자 필터링 시스템)

  • Lee, Seung-Jae;Choi, Deok-Jai
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.122-135
    • /
    • 2011
  • Mobile spam message is a harmful factor which makes receivers to be annoyed and leads to unnecessary social cost. Unwanted junk messages flowing to a smart phone ruin main purpose of the smart work system to enhance the productivity, so we need to study on this area. In this paper, we proposed a novel spam filter on the smartphone in order to reduce computing process and improve the accuracy rate by feedback of error results to a training sample set. As the spam classifier operates on the smartphone independently with training on only user's received data, it could reflect user preference. The authorized personal computer takes on heavy works, such as preprocessing, feature selecting and training process, and the smartphone takes on light works to block junk messages. Experimental results showed reasonable accuracy rate of over 95%, and we found that the application occupied constant computing resources while running on the phone.

A Mobile Spam SMS Filtering System using Machine learning about syllable and the features of caller ID (발신번호 특징 및 음절단위 기계학습을 통한 모바일 스팸 SMS 필터링 시스템)

  • You, Hwan-il;Chae, Dong Kyu;Im, Eul-Gyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.219-222
    • /
    • 2011
  • 본 논문에서는 스팸 SMS 발신번호와 메시지 텍스트의 특징을 기계학습한 스팸 필터링 시스템을 논한다. 최근 변화하는 스팸SMS에 대한 적응력을 위해서, 각 트레이닝 셋의 수신 텍스트를 음절단위로 분석 할 것을 제안한다. 그리고 기존의 분류기는 성능이 미흡하거나 구현의 복잡성으로 인해 실제로 스펨 필터엔진으로 활용되지 않는 점을 극복하기 위해서 보다 단순한 분류기를 사용한다. 제안하는 시스템은 트레이닝 셋의 발신번호 및 수신 텍스트의 음절단위를 빈도수와 묶어 학습데이터를 구성하고, 테스트 셋을 스팸적 논스팸적으로 분석하여 스팸일 확률을 계산한다. 또한 Naive baysian를 바탕으로 한 경계값 기반 분류기를 통해, 타 분류기에 비해 구현 및 활용면에서 실용성이 높으면서도 성능이 뒤처지지 않는 시스템을 제안한다.