• 제목/요약/키워드: Mobile sensor network

Search Result 680, Processing Time 0.029 seconds

Rule-Based Anomaly Detection Technique Using Roaming Honeypots for Wireless Sensor Networks

  • Gowri, Muthukrishnan;Paramasivan, Balasubramanian
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1145-1152
    • /
    • 2016
  • Because the nodes in a wireless sensor network (WSN) are mobile and the network is highly dynamic, monitoring every node at all times is impractical. As a result, an intruder can attack the network easily, thus impairing the system. Hence, detecting anomalies in the network is very essential for handling efficient and safe communication. To overcome these issues, in this paper, we propose a rule-based anomaly detection technique using roaming honeypots. Initially, the honeypots are deployed in such a way that all nodes in the network are covered by at least one honeypot. Honeypots check every new connection by letting the centralized administrator collect the information regarding the new connection by slowing down the communication with the new node. Certain predefined rules are applied on the new node to make a decision regarding the anomality of the node. When the timer value of each honeypot expires, other sensor nodes are appointed as honeypots. Owing to this honeypot rotation, the intruder will not be able to track a honeypot to impair the network. Simulation results show that this technique can efficiently handle the anomaly detection in a WSN.

Cost-Effective and Distributed Mobility Management Scheme in Sensor-Based PMIPv6 Networks with SPIG Support (센서기반 프록시 모바일 IPv6 네트워크에서 SPIG를 이용한 비용효과적인 분산 이동성관리 기법)

  • Jang, Soon-Ho;Jeong, Jong-Pil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.211-221
    • /
    • 2012
  • The development of wireless sensor networks (WSNs) is progressed slowly due to limited resources, but it is in progress to the development of the latest IP-based IP-WSN by the development of hardware and power management technology. IPv6 over Low power WPAN (6LoWPAN) is capable of IPv6-built low-power devices. In these IP-based WSNs, existing IP-based techniques which was impossible in WSNs becomes possible. 6LoWPAN is based on the IEEE 802.15.4 sensor networks and is a IPv6-supported technology. Host-based mobility management scheme in IP-WSNs are not suitable due to the additional signaling, network-based mobility management scheme is more suitable. In this paper, we propose an enhanced PMIPv6-based route optimization scheme which consider multi-6LoWPAN network environments. All SLMA (Sensor Local Mobility Anchor) of the 6LoWPAN domain are connected with the SPIG (Sensor Proxy Internetworking Gateway) and performs distributed mobility control for the 6LoWPAN-based inter-domain operations. All information of SLMA in 6LoWPAN domain is maintained by SMAG (Sensor Mobile Access Gateway), and then is performed the route optimization quickly. The status information of the route optimization from SPIG is stored to SLMA and it is supported without additional signaling.

A New Auto-Localization Scheme in Sensor Networks (센서 네트워크상의 새로운 자동 위치결정 방법)

  • Kim, Sung-Ho;Zhang, Cong Yi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.925-930
    • /
    • 2008
  • Many sensor network applications require that each node's sensor data stream be annotated with its physical location in some coordinate system. Equipping GPS on every sensor node is often expensive and does not work in indoor deployments. Recently, cricket-based localization system is often used for indoor localization system. It is very important to know the exact position of beacons in cricket-based localization system for identifying moving sensor node's position. In this paper, a new method, Mobile Listener Detect Algorithm (MLD) which can automatically calculate the unknown newly installed beacons is proposed. For the verification of the feasibility of the proposed scheme, we have conducted several experiments.

Implementation of Gait Pattern Monitoring System Using FSR(Force Sensitive Resistor) Sensor (압력 센서를 이용한 보행 패턴 모니터링 시스템 구현)

  • Kim, Kiwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.56-60
    • /
    • 2021
  • Recently, technologies for internet of things have been rapidly advanced with development of network. Also interest in smart healthcare that informs about motion information of users has been growing. In this paper, a system that is monitoring the weight on both feet by using aduino and FSR(Force Sensitive Resistor) Sensor is implemented. A 4-channel sensor driver module was implemented to measure a more accurate weight value. It is monitoring the weight on both feet by the using an application for either your PC or mobile device. Mobile applications can contribute to reducing human damage by sending messages along with location in emergency situations, such as injuries caused by falls during outdoor activities.

Efficient Mobile Sink Location Management Scheme Using Multi-Ring in Solar-Powered Wireless Sensor Networks

  • Kim, Hyeok;Kang, Minjae;Yoon, Ikjune;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.10
    • /
    • pp.55-62
    • /
    • 2017
  • In this paper, we proposes a multi-ring based mobile sink location scheme for solar-powered wireless sensor network (WSN). The proposed scheme maintains the multi-rings in which nodes keep the current location of sink node. With the help of nodes in multi-rings, each node can locate the sink node efficiently with low-overhead. Moreover, because our scheme utilizes only surplus energy of a node, it can maintain multiple rings without degrading any performance of each node. Experimental results show that the proposed scheme shows much better latency and scalability with lower energy-consumption than the existing single-ring based scheme.

A Rendezvous Node Selection Scheme Considering a Drone's Trajectory for Reliable Data Collection (안정적인 데이터 수집을 위해 드론의 비행경로를 고려한 랑데부 노드 선정 기법)

  • Min, Hong;Jung, Jinman;Kim, Bongjae;Heo, Junyoung
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.2
    • /
    • pp.77-81
    • /
    • 2018
  • Many studies that improve the efficiency of data collection and a network's lifetime by using a mobile sink have been conducted using wireless sensor networks. If a drone is used as a mobile sink, the drone can collect data more efficiently than can existing mobile sinks operating on the ground because the drone can minimize the effects of obstacles and the terrain. In this paper, we propose a rendezvous node selection scheme which considers estimated drone's trajectory and data collection latency of sensor networks for reliable data collection, when a drone whose trajectory is not predetermined works with terrestrial wireless sensor networks. A selected rendezvous node on the ground collects data from the entire network and it sends then collected data to the drone via direct communication. We also verify that the proposed scheme is more reliable than previous schemes without considering the drone's trajectory and data collection latency.

Remote Navigation and Monitoring System for Mobile Robot Using Smart Phone (스마트 폰을 이용한 모바일로봇의 리모트 주행제어 시스템)

  • Park, Jong-Jin;Choi, Gyoo-Seok;Chun, Chang-Hee;Park, In-Ku;Kang, Jeong-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.207-214
    • /
    • 2011
  • In this paper, using Zigbee-based wireless sensor networks and Lego MindStorms NXT robot, a remote monitoring and navigation system for mobile robot has been developed. Mobile robot can estimate its position using encoder values of its motor, but due to the existing friction and shortage of motor power etc., error occurs. To fix this problem and obtain more accurate position of mobile robot, a ultrasound module on wireless sensor networks has been used in this paper. To overcome disadvantages of ultrasound which include straightforwardness and narrow detection coverage, we rotate moving node attached to mobile robot by $360^{\circ}$ to measure each distance from four fixed nodes. Then location of mobile robot is estimated by triangulation using measured distance values. In addition, images are sent via a network using a USB Web camera to smart phone. On smart phones we can see location of robot, and images around places where robot navigates. And remote monitoring and navigation is possible by just clicking points at the map on smart phones.

An Efficient Cluster Management Scheme Using Wireless Power Transfer for Mobile Sink Based Solar-Powered Wireless Sensor Networks

  • Son, Youngjae;Kang, Minjae;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.105-111
    • /
    • 2020
  • In this paper, we propose a scheme that minimizes the energy imbalance problem of solar-powered wireless sensor network (SP-WSN) using both a mobile sink capable of wireless power transfer and an efficient clustering scheme (including cluster head election). The proposed scheme charges the cluster head using wireless power transfer from a mobile sink and mitigates the energy hotspot of the nodes nearby the head. SP-WSNs can continuously harvest energy, alleviating the energy constraints of battery-based WSN. However, if a fixed sink is used, the energy imbalance problem, which is energy consumption rate of nodes located near the sink is relatively increased, cannot be solved. Thus, recent research approaches the energy imbalance problem by using a mobile sink in SP-WSN. Meanwhile, with the development of wireless power transmission technology, a mobile sink may play a role of energy charging through wireless power transmission as well as data gathering in a WSN. Simulation results demonstrate that increase the amount of collected data by the sink using the proposed scheme.

Efficient Network Configuration Method for Mobile Nodes in Sensor Networks (센서 네트워크의 이동 노드를 위한 효율적 네트워크 구성 방법)

  • Lee, Jae-Hyung;Lee, Eung-Soo;Kim, Dong-Sung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.6
    • /
    • pp.113-123
    • /
    • 2010
  • In this paper, an efficient network configuration method is proposed for mobile nodes in LR-WPAN (Low Rate Wireless Personal Area Network) based on the IEEE 802.15.4 standard. The proposed MSBS (mobile sensor beacon setup) method can be used to implement a joining procedure by which an improved processing rate can be achieved. This improvement is achieved by using BOP (Beacon only Period). In this method, the performance of mobile nodes is enhanced by using information on depth, traffic, and RSSI (Received Signal Strength Indication). By using the MSBS method, trusted data can be transferred and traffic overloads that occur at specific nodes can be prevented. The information obtained from the mobile nodes in wireless networks is analyzed using the proposed method, in order to study the performance of the method. Simulation results show that the MSBS method can be used to obtain an efficient network configuration according to the mobility of nodes in LR-WPAN.

Efficient Approach for Maximizing Lifespan in Wireless Sensor Networks by Using Mobile Sinks

  • Nguyen, Hoc Thai;Nguyen, Linh Van;Le, Hai Xuan
    • ETRI Journal
    • /
    • v.39 no.3
    • /
    • pp.353-363
    • /
    • 2017
  • Recently, sink mobility has been shown to be highly beneficial in improving network lifetime in wireless sensor networks (WSNs). Numerous studies have exploited mobile sinks (MSs) to collect sensed data in order to improve energy efficiency and reduce WSN operational costs. However, there have been few studies on the effectiveness of MS operation on WSN closed operating cycles. Therefore, it is important to investigate how data is collected and how to plan the trajectory of the MS in order to gather data in time, reduce energy consumption, and improve WSN network lifetime. In this study, we combine two methods, the cluster-head election algorithm and the MS trajectory optimization algorithm, to propose the optimal MS movement strategy. This study aims to provide a closed operating cycle for WSNs, by which the energy consumption and running time of a WSN is minimized during the cluster election and data gathering periods. Furthermore, our flexible MS movement scenarios achieve both a long network lifetime and an optimal MS schedule. The simulation results demonstrate that our proposed algorithm achieves better performance than other well-known algorithms.