• Title/Summary/Keyword: Mobile measurement vehicle

Search Result 59, Processing Time 0.028 seconds

Construction and Measurement of a T-DMB/GPS/Mobile Antenna for Vehicular Application (차량에 적용 가능한 T-DMB/GPS/Mobile 안테나의 제작과 측정)

  • Lee, Seung-Jae;Yoon, Joong-Han;Lee, Jin-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.5
    • /
    • pp.629-636
    • /
    • 2011
  • This paper presents the design of a novel integrated T-DMB/GPS/Mobile antenna for vehicular application. The T-DMB antenna is designed with a modified meander-type microstrip patch providing linearly a polarized broadside radiation pattern. The GPS antenna is designed with an inserted slot in the patch antenna providing circularly polarized broadside radiation pattern. The Mobile (GSM, AMPS, DCS, PCS, UMTS, etc.) antenna is designed as a modified G-type patch antenna providing multi-band operation. Experimental results indicate that the impedance bandwidth (VSWR 1:2.5) of the proposed T-DMB /GPS/Mobile antenna satisfactorily matches that of the simulation results. The 2D and 3D radiation patterns and gains according to the results of the experiment are also presented and discussed.

Properties of Roadway Particles from the Interaction between Tire and Road Pavement (차량 주행 과정에서 타이어와 도로의 마찰에 의해서 발생하는 도로입자의 특성연구)

  • Lee, Seok-Hwan;Kim, Hong-Seok;Park, Jun-Hyuk;Woo, Se-Jong;Kwak, Ji-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.24-32
    • /
    • 2012
  • A large fraction of urban $PM_{10}$ concentrations is due to non-exhaust traffic emissions including road dust, tire wear particles, and brake lining particles. Although potential health and environmental impacts associated with tire wear debris have been increased, few environmentally and biologically relevant studies of actual tire wear debris have been conducted. Tire wear particles (TWP) are released from the tire tread as a result of the interaction between the tire and the pavement. Roadway particles (RP), meanwhile, are particles on roads composed of a mixture of elements from tires, pavements, fuels, brakes, and environmental dust. The main objective of present study is to identify the contribution of tires to the generation of RP and to assess the potential environmental and health impacts of this contribution. First, a mobile measurement system was constructed and used to measure the roadway particles on asphalt road according to vehicle speed. The equipment of the mobile system provides $PM_{10}$ concentrations by Dusttrak DRX and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and an aerosol particle sizer (APS). When traveling on an asphalt road at constant speed, there is a clear tendency for PM10 concentration to increase slightly in accordance with an increase in the vehicle speed. It was also found that considerable brake wear particles and particles from tire/road interface were generated by rapid deceleration of the vehicle. The morphology and elements of the roadway particles were also analyzed using SEM-EDX technique.

The Properties of Roadway Particles from the Interaction between the Tire and the Road Pavement (실제 도로 주행과정에서 타이어와 도로의 마찰에 의해서 발생하는 미세입자의 특성연구)

  • Lee, Seok-Hwan;Kim, Hong-Suk;Park, Jun-Hyuk;Cho, Gyu-Baek
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.2
    • /
    • pp.131-141
    • /
    • 2012
  • A large fraction of urban $PM_{10}$ concentrations is due to non-exhaust traffic emissions including road dust, tire wear particles, and brake lining particles. Although potential health and environmental impacts associated with tire wear debris have increased, few environmentally and biologically relevant studies of actual tire wear debris have been conducted. Tire wear particles (TWP) are released from the tire tread as a result of the interaction between the tire and the pavement. Roadway particles (RP), meanwhile, are particles on roads composed of a mixture of elements from tires, pavements, fuels, brakes, and environmental dust. The main objective of present study is to identify the contribution of tires to the generation of RP and to assess the potential environmental and health impacts of this contribution. First, a mobile measurement system was constructed and used to measure the RP on asphalt roads according to vehicle speed. The equipment of the mobile system provides $PM_{10}$ concentrations by Dusttrak DRX and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and an aerosol particle sizer (APS). When traveling on an asphalt road at constant speed, there is a clear tendency for $PM_{10}$ concentration to increase slightly in accordance with an increase in the vehicle speed. It was also found that considerable brake wear particles and particles from tire/road interface were generated by rapid deceleration of the vehicle. As a result, the $PM_{10}$ concentration and particle number of ultra-fine particles were measured to be very high.

Accuracy Analysis of Image Orientation Technique and Direct Georeferencing Technique

  • Bae Sang-Keun;Kim Byung-Guk
    • Spatial Information Research
    • /
    • v.13 no.4 s.35
    • /
    • pp.373-380
    • /
    • 2005
  • Mobile Mapping Systems are effective systems to acquire the position and image data using vehicle equipped with the GPS (Global Positioning System), IMU (Inertial Measurement Unit), and CCD camera. They are used in various fields of road facility management, map update, and etc. In the general photogrammetry such as aerial photogrammetry, GCP (Ground Control Point)s are needed to compute the image exterior orientation elements (the position and attitude of camera). These points are measured by field survey at the time of data acquisition. But it costs much time and money. Moreover, it is not possible to make sufficient GCP as much as we want. However Mobile Mapping Systems are more efficient both in time and money because they can obtain the position and attitude of camera at the time of photographing. That is, Image Orientation Technique must use GCP to compute the image exterior orientation elements, but on the other hand Direct Georeferencing can directly compute the image exterior orientation elements by GPS/INS. In this paper, we analyze about the positional accuracy comparison of ground point using the Image Orientation Technique and Direct Georeferencing Technique.

  • PDF

Implementation of 3D Road Surface Monitoring System for Vehicle based on Line Laser (선레이저 기반 이동체용 3차원 노면 모니터링 시스템 구현)

  • Choi, Seungho;Kim, Seoyeon;Kim, Taesik;Min, Hong;Jung, Young-Hoon;Jung, Jinman
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.101-107
    • /
    • 2020
  • Road surface measurement is an essential process for quantifying the degree and displacement of roughness in road surface management. For safer road surface management and quick maintenance, it is important to accurately measure the road surface while mounted on a vehicle. In this paper, we propose a sophisticated road surface measurement system that can be measured on a moving vehicle. The proposed road surface measurement system supports more accurate measurement of the road surface by using a high-performance line laser sensor. It is also possible to measure the transverse and longitudinal profile by matching the position information acquired from the RTK, and the velocity adaptive update algorithm allows a manager to monitor in a real-time manner. In order to evaluate the proposed system, the Gocator laser sensor, MRP module, and NVIDIA Xavier processor were mounted on a test mobile and tested on the road surface. Our evaluation results demonstrate that our system measures accurate profile base on the MSE. Our proposed system can be used not only for evaluating the condition of roads but also for evaluating the impact of adjacent excavation.

Study on the Electromagnetic Excitation System for the Measurement of Dynamic Coefficients of Air Foil Bearing for High Speed Rotor (초고속 회전체용 공기 포일 베어링의 동특성 계수 측정을 위한 전자석 가진장치에 관한 연구)

  • Park, Cheol-Hoon;Choi, Sang-Kyu;Ham, Sang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.18-25
    • /
    • 2013
  • Recently the requirement of long-term mobile energy source for mobile robot or small-sized unmanned vehicle is highly increased, and the micro turbine generator(MTG) which is known to have high energy and power density is under development. MTG is designed to have air foil bearing and high speed rotor of which operating speed is 400,000rpm. In the development stage of high speed rotor and bearing, stability analysis for the full operational speed range is essential and the dynamic coefficients such as stiffness and damping coefficients of bearing depending on the rotational speed are required for that. Although perturbation method is usually used to identify the dynamic coefficients, it's not easy to give the perturbation to the high speed rotating rotor. In this study, we present the dynamic coefficients measurement system for air foil bearing which consists of electromagnets, gap sensors, high speed motor and controller. This measurement system can exert the sine sweep force to the rotor-bearing, measure the displacement of rotor and get FRF(Frequency response function) of rotor-bearing. The least square estimation method is applied to identify the dynamic coefficients of bearing from the measured frequency response at the different rpm and the identified dynamic coefficients for the wide rotational speed range are presented.

Emission Factor and Fuel Economy Calculation Using Vehicle Inspection and Maintenance Program (자동차 환경검사에 의한 대기오염물질 배출계수 및 연비 산출)

  • Lee, Tae-Woo;Keel, Ji-Hoon;Park, Jun-Hong;Eom, Myoung-Do;Kim, Jong-Choon;Lee, Dae-Yup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.97-106
    • /
    • 2009
  • An objective of this study is to give practical information that could be used for calculating pollutant emission factors and fuel economy from Korean Inspection & Maintenance program, which has been using steady state acceleration simulation mode. Concentration results from I/M test is adequately converted to mass emission factors and fuel efficiency data, which have unit of g/km and km/L, respectively. Exhaust volume flow(EVF), which is for converting emission result from concentration to mass, is measured by tracer method in various vehicle speed - power condition. It is found that there is an apparent second order relationship between EVF and vehicle inertia weight. EVF is expressed in function of vehicle inertia weight in order to estimate EVF in I/M site without measuring device. Converted mass emission results from measured EVF and raw emission analyzer show a satisfactory agreement with those from conventional CVS-bag type measurement system. Mass emission factors and fuel efficiency from measured EVF and estimated EVF also show good agreement to each other. Considering that an I/M program has great advantages to recruit-based emission test in terms of the number of test vehicle, the information in this study can be used for developing an alternative procedure to collect more various data to establish national database of mobile emission factors and fuel economy, even though the driving cycle in I/M program is steady state cycle rather than transient cycle.

A Study on Exhaust Gas Characteristics of Heavy-duty Diesel Engines through Actual Vehicle Application of Non-influenced Temperature Condition Type Active Regeneration Method (온도조건 비영향형 복합재생방식 DPF의 실차적용을 통한 대형디젤기관의 배출가스 특성 연구)

  • Yun chul Lee;Sang ki Oh
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.53-59
    • /
    • 2024
  • Cars are one of the main causes of air pollution in large cities, and 34.6% of domestic air pollution emissions come from mobile sources, of which cars account for 69.6%. In particular, the importance of nitrogen oxides (NOx) and particulate matter (PM), which are major pollutants in diesel vehicles, is increasing due to their high contribution to emissions. Therefore, in this study, the problem of natural regeneration caused by low exhaust gas temperature during low speed and low load operation was solved by applying a complex regeneration DPF that is not affected by temperature conditions to large diesel vehicles with higher driving time and engine displacement than small and medium-sized vehicles. And the feasibility of application to large diesel vehicles was reviewed by measuring the emission reduction efficiency. As a result of the reduction efficiency test on the actual vehicle durability product, PM showed a reduction efficiency of 84% to 86%, and the reduction efficiency of gaseous substances showed a high reduction efficiency of over 90%. The actual vehicle applicability test was completed with three driving patterns: village bus vehicle, police car, and road-going construction equipment vehicle, and no device problems occurred until the end of the test. Both load and no-load smoke measurement results showed a smoke reduction efficiency of over 96%.

A Study on Rotation Method Appling Slip-ring of Direction Finding Antenna Mast for Mobile Radio Wave Measurement System (이동형 전파측정시스템에서 슬립링을 적용한 방향탐지 안테나 마스트 회전 방법에 관한 연구)

  • Sohn, Ju-Hang;Han, In-Sung;Kim, Duck-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.499-504
    • /
    • 2017
  • A Mobile Radio Wave Measurement System (MRWMS)is a vehicle-mounted system designed to be operating in a single mission. The mission characteristic for mobile measurement requires mobility. For this, we must consider the arrangement and embedded method of MRWMS's antennas. In this paper, we described the measurement method design of direction detecting accuracy for MRWMS and designed the direction finding antenna mast capable of rotating itself by using a slip ring without turntable for Direction Finding (DF) accuracy test. As we removed the dependency of a limited local area by designing a measurement method of direction detecting accuracy, Equipment Under Test (EUT) zero-Adjustment and mounted process shortened. So, we the reduced production costs. We expect an improved cable loss value by shortening the RF cable length in accordance with our design. In addition, due to the same phenomenon, the entire system is lighter and the mobility is improved.

Development of Walking Assistive System using Body Weight Supporting and Path Planning Strategy (인체 자중 보상 및 로봇 경로계획법을 이용한 이동형 보행 재활 시스템 개발)

  • Yu, Seung-Nam;Shon, Woong-Hee;Suh, Seung-Whan;Lee, Sang-Ho;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.939-947
    • /
    • 2010
  • With the rising numbers of elderly and disabled people, the demand for welfare services using a robotic system and not involving human effort is likewise increasing. This study deals with a mobile-robot system combined with a BWS (Body Weight Support) system for gait rehabilitation. The BWS system is designed via the kinematic analysis of the robot's body-lifting characteristics and of the walking guide system that controls the total rehabilitation system integrated in the mobile robot. This mobile platform is operated by utilizing the AGV (Autonomous Guided Vehicle) driving algorithm. Especially, the method that integrates geometric path tracking and obstacle avoidance for a nonholonomic mobile robot is applied so that the system can be operated in an area where the elderly users are expected to be situated, such as in a public hospital or a rehabilitation center. The mobile robot follows the path by moving through the turning radius supplied by the pure-pursuit method which is one of the existing geometric path-tracking methods. The effectiveness of the proposed method is verified through the real experiments those are conducted for path tracking with static- and dynamic-obstacle avoidance. Finally, through the EMG (Electromyography) signal measurement of the subject, the performance of the proposed system in a real operation condition is evaluated.