• 제목/요약/키워드: Mobile emissions

검색결과 93건 처리시간 0.023초

전력선 통신이 해상 통신에 주는 전파 방사 영향 연구 (A Study on Impact of emissions from power line communication interfering with marine radio services)

  • 장동원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.115-118
    • /
    • 2003
  • 본 고에서는 전력선 통신이 해상 통신 서비스에 주는 간섭에 대해서 기술하였다. 전력선 통신 뿐 만 아니라 통신선을 이용하는 ADSL이나 VDSL은 고속의 데이터 전송을 위해 광대역을 사용하는데 이때 발생되는 전파 방사가 해상 통신 둥 기존 무선 서비스에 간섭을 주게 된다. 본 고에서는 30MHz이하의 대역에서 사용되고 있는 해상 통신 서비스가 전력선 통신에 의해서 간섭을 받게 될 수 있는 가능성을 분석하고 이러한 간섭을 피하기 위한 보호 대책에 대해서 기술하였다.

  • PDF

항공기 엔진에 의한 대기오염 (Air Pollution by Airplane Engines)

  • 김대식
    • 기술사
    • /
    • 제32권5호
    • /
    • pp.118-125
    • /
    • 1999
  • Air pollutant emissions from airplane engines are estimated about 2 to 4 % of mobile source of USA and European countries which is not a large portion of current air pollution. But the passengers and airfreights are continuously increasing 5 to 7% annually and potential demands of air transportation services come to present, it could effect air pollutant emissions of USA will increase within 15 years. In case of our country, there has been continuous increase of air transportation service due to considerable economic growth in recent years and increase of air pollutant emissions of major international airports has followed. Rapid increase of air transportation due to launching of Inchon International Airport could effect air pollution dominantly. By this circumstance environmental specialist as well as mass communication raised necessity of air pollutant emission regulation from airplane engines. It is estimated that air pollutant emissions from airplane engines in our country is 2.7% of automobile sources, 10,809 ton, which is the same level as USA and European countries. It is increased by 12,2% compared to air pollutant emissions during 1996 and it will be increased more than a half of current air pollutant emission within 15 years due to our country's economic condition. Therefore implementation of airplane engine emissions regulation as well as test standards and accumulation of technology about characteristics of airplane engine emission and reduction method are needed. And continuous estimation of air pollutant emission from airplane engines and monitoring of increment as well as development of countermeasures by long term are necessary.

  • PDF

Gas Distribution Mapping and Source Localization: A Mini-Review

  • Taehwan Kim;Inkyu Park
    • 센서학회지
    • /
    • 제32권2호
    • /
    • pp.75-81
    • /
    • 2023
  • The significance of gas sensors has been emphasized in various industries and applications, owing to the growing significance of environmental, social, and governance (ESG) management in corporate operations. In particular, the monitoring of hazardous gas leakages and detection of fugitive emissions have recently garnered significant attention across several industrial sectors. As industrial workplaces evolve to ensure the safety of their working environments and reduce greenhouse gas emissions, the demand for high-performance gas sensors in industrial sectors dealing with toxic substances is on the rise. However, conventional gas-sensing systems have limitations in monitoring fugitive gas leakages at both critical and subcritical concentrations in complex environments. To overcome these difficulties, recent studies in the field of gas sensors have employed techniques such as mobile robotic olfaction, remote optical sensing, chemical grid sensing, and remote acoustic sensing. This review highlights the significant progress made in various technologies that have enabled accurate and real-time mapping of gas distribution and localization of hazardous gas sources. These recent advancements in gas-sensing technology have shed light on the future role of gas-detection systems in industrial safety.

교통수요모형과 의사결정모형을 이용한 자동차 배출저감정책 평가 (Evaluation of Mobile Emissions Reduction Strategies Using Travel Demand Model and Analytic Hierarchy Process)

  • 이규진;박관휘;심상우;최기주
    • 대한토목학회논문집
    • /
    • 제35권5호
    • /
    • pp.1123-1133
    • /
    • 2015
  • 본 연구는 자동차 배출저감정책에 대한 기존 정량적 요소 중심의 평가 방법과 차별된, 교통수요모형(Travel Demand Model, TDM)과 다기준 의사결정기법(Analytic Hierarchy Process, AHP)의 연계된 평가 체계를 제시하고자 한다. 자동차 배출저감정책의 다기준 평가항목은 대기오염물질 및 온실가스 감축효과, 상위계획과의 일치성, 정책추진 용이성, 기술적용 용이성으로 설정하였고, AHP분석 결과 정량적 평가항목인 대기오염물질과 온실가스의 감축효과에 대한 상대적 중요도가 각 0.373, 0.218로 정책적 평가항목들에 비해 중요도가 높은 것으로 나타났다. 본 연구의 평가 방법론을 적용하여 각 정책들을 평가한 결과, 노후 경유차 조기폐차 정책이 가장 효과적인 정책으로 나타났고, 승용차 요일제 정책, 경차보급 활성화 정책 순으로 나타났으며, 이는 기존의 TDM 또는 AHP에 의해 평가된 우선순위와 다소 차이가 있는 것으로 확인되었다. 이러한 연구 결과는 저감정책 시나리오를 구성한 기본적인 가정과 범위에 국한된 결과라는 한계점이 있지만, 자동차 배출저감 효과와 더불어 정책적 요소들을 반영하여 보다 합리적인 자동차 배출저감정책 방향을 설정하고 효과적인 대응을 하는데 기여할 것으로 기대된다.

수도권 초미세먼지 농도모사 : (II) 오염원별, 배출물질별 자체 기여도 및 전환율 산정 (PM2.5 Simulations for the Seoul Metropolitan Area: (II) Estimation of Self-Contributions and Emission-to-PM2.5 Conversion Rates for Each Source Category)

  • 김순태;배창한;유철;김병욱;김현철;문난경
    • 한국대기환경학회지
    • /
    • 제33권4호
    • /
    • pp.377-392
    • /
    • 2017
  • A set of BFM (Brute Force Method) simulations with the CMAQ (Community Multiscale Air Quality) model were conducted in order to estimate self-contributions and conversion rates of PPM (Primary $PM_{2.5}$), $NO_x$, $SO_2$, $NH_3$, and VOC emissions to $PM_{2.5}$ concentrations over the SMA (Seoul Metropolitan Area). CAPSS (Clean Air Policy Support System) 2013 EI (emissions inventory) from the NIER (National Institute of Environmental Research) was used for the base and sensitivity simulations. SCCs (Source Classification Codes) in the EI were utilized to group the emissions into area, mobile, and point source categories. PPM and $PM_{2.5}$ precursor emissions from each source category were reduced by 50%. In turn, air quality was simulated with CMAQ during January, April, July, and October in 2014 for the BFM runs. In this study, seasonal variations of SMA $PM_{2.5}$ self-sensitivities to PPM, $SO_2$, and $NH_3$ emissions can be observed even when the seasonal emission rates are almost identical. For example, when the mobile PPM emissions from the SMA were 634 TPM (Tons Per Month) and 603 TPM in January and July, self-contributions of the emissions to monthly mean $PM_{2.5}$ were $2.7{\mu}g/m^3$ and $1.3{\mu}g/m^3$ for the months, respectively. Similarly, while $NH_3$ emissions from area sources were 4,169 TPM and 3,951 TPM in January and July, the self-contributions to monthly mean $PM_{2.5}$ for the months were $2.0{\mu}g/m^3$ and $4.4{\mu}g/m^3$, respectively. Meanwhile, emission-to-$PM_{2.5}$ conversion rates of precursors vary among source categories. For instance, the annual mean conversion rates of the SMA mobile, area, and point sources were 19.3, 10.8, and $6.6{\mu}g/m^3/10^6TPY$ for $SO_2$ emissions while those rates for PPM emissions were 268.6, 207.7, and 181.5 (${\mu}g/m^3/10^6TPY$), respectively, over the region. The results demonstrate that SMA $PM_{2.5}$ responses to the same amount of reduction in precursor emissions differ for source categories and in time (e.g. seasons), which is important when the cost-benefit analysis is conducted during air quality improvement planning. On the other hand, annual mean $PM_{2.5}$ sensitivities to the SMA $NO_x$ emissions remains still negative even after a 50% reduction in emission category which implies that more aggressive $NO_x$ reductions are required for the SMA to overcome '$NO_x$ disbenefit' under the base condition.

이동 측정방법을 사용한 부산지역 주요 도로의 대기오염도 조사 (An Investigation into Air Quality of Main Roads in Busan using Mobile Platform Measurement)

  • 도우곤;정우식;유은철;곽진
    • 한국환경과학회지
    • /
    • 제22권9호
    • /
    • pp.1199-1211
    • /
    • 2013
  • Mobile sources produce a significant fraction of total anthropogenic emissions in Korea and have harmful effects on air quality. Mobile emissions are intrinsically difficult to estimate due to complicated road networks and variations of traffic volume with location and time. To measure traffic pollutants with high temporal and spatial resolution under real conditions a mobile laboratory was designed. The mobile laboratory provide concentrations of $SO_2$, CO, NO, $NO_2$ and location coordinate value. This approach allowed for pollutant level measurements on many roads within short periods of time. In this study, on-road concentrations of $SO_2$, CO, NO and $NO_2$ were measured using mobile platform measurement along the 25 main roads in Busan to estimate the average air pollution level in short time difference. The measurements were conducted on favorable meteorological days from 2010 to 2012 and the overall concentrations of $SO_2$, CO, NO and $NO_2$ were 0.006, 0.8, 0.182 and 0.055 ppm respectively. The result showed that the concentration of CO, NO and $NO_2$ on road were twice, 18 times and 2.5 times higher than regional air quality monitoring sites mean in same period.

자동차의 배기관 VOCs 배출 특성 (Exhaust VOCs Emission Characteristics from Motor Vehicles)

  • 유영숙;류정호;한종수;김선문;임철수;김대욱;이동민;이중구;엄명도;김종춘
    • 한국대기환경학회지
    • /
    • 제24권3호
    • /
    • pp.275-283
    • /
    • 2008
  • Since mobile source is a major source of VOCs, quantifying emissions from motor vehicles is an important factor to control VOCs in atmosphere. In this study, in order to evaluate tailpipe VOCs emissions from motor vehicles, mass emissions of non-methane volatile organic compounds from 45 vehicles were determined. Measurements were made on a chassis dynamometer using CVS-75 mode and speed specific drive modes. Target VOCs are 53 compounds determined as the volatile ozone precursors. The individual VOCs composition of vehicle emission and emission rates were also determined. In case of gasoline vehicles, VOCs emission from over 80,000 km vehicles were about 46% larger than less 80,000 km vehicles. The difference in benzene and toluene according to driving mileage was 44% and 26% respectively. The composition of VOCs were different by fuel type. The order of VOCs composition was paraffins>aromatics>olefins in gasoline vehicle emissions, paraffins>olefins>aromatics in light duty diesel vehicle emissions. The VOCs emissions were decreased as vehicle speed increasing. These results will be used to calculate total VOCs emissions from automobiles in the future.

PEMS를 이용한 농업용 트랙터의 배기가스 배출계수 평가 (Evaluation of exhaust emissions factor of agricultural tractors using portable emission measurement system (PEMS))

  • 김완수;이시언;백승민;백승윤;전현호;김택진;임류갑;최장영;김용주
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권3호
    • /
    • pp.15-24
    • /
    • 2023
  • The aim of this study was to measure and evaluate the exhaust emission factors of agricultural tractors. Engine characteristics and three exhaust emissions (CO, NOx, PM) were collected under actual agricultural operating conditions. Experiments were performed on idling, driving, plow tillage, and rotary tillage. The load factor (LF) was calculated using the collected engine data, and the emission factor was analyzed using the LF and exhaust emissions. The engine characteristics and exhaust emissions were significantly different for each working condition, and in particular, the LF was significantly different from the currently applied 0.48 LF. The data distribution of exhaust emissions was different depending on the engine speed. In some conditions, the emission factor was higher than the exhaust emission standards. However, since most emission limit standards are values calculated using an engine dynamometer, even if the emission factor measured under actual working conditions is higher, it cannot be regarded as wrong. It is expected that the results of this study can be used for the inventory construction of a calculation for domestic agricultural machinery emissions in the future.

Euro 5 경유 대형트럭의 유해대기오염물질 배출특성 (Emission Characteristics of Hazardous Air Pollutants from Diesel Heavy duty Trucks for Euro 5)

  • 홍희경;문선희;서석준;김정화;정성운;정택호;홍유덕;성기재;김선문
    • 한국분무공학회지
    • /
    • 제23권2호
    • /
    • pp.74-80
    • /
    • 2018
  • Emission characteristics of regulated pollutants (CO, NOx, HC and PM) and hazardous air pollutants (HAPs) from diesel heavy duty trucks equipped with EGR+pDPF and SCR for Euro 5 emission standards were investigated using a chassis dynamometer. In the case of regulated pollutants, diesel heavy duty trucks with EGR+pDPF emitted 79% less CO than those with SCR. Also, those with the SCR emitted 36% less NOx than those with the EGR+pDPF. The results of VOCs have show that alkanes emissions for heavy duty trucks with the EGR+pDPF and the SCR have been higher than alkenes, cycloalkanes and aromatics. In the case of individual VOCs, the highest of propene emissions for 11.3~16.1% occupied. For aromatics group, benzene emissions are the highest percentage for 4.4~15.5%. In the future, the results of present study will provide basic data to set up HAPs emissions inventory for mobile source.

대학 내 에너지 소비에 따른 온실가스-대기오염 통합 인벤토리 및 대체 에너지 사용 시나리오 분석 (A Study of GHG-AP Integrated Inventories and Alternative Energy Use Scenario of Energy Consumption in the University)

  • 정재형;권오열
    • 한국환경과학회지
    • /
    • 제23권9호
    • /
    • pp.1643-1654
    • /
    • 2014
  • The university is one of the main energy consumption facilities and thereby releases a large amount of greenhouse gas (GHG). Accordingly, efforts for reducing energy consumption and GHG have been established in many local as well as international universities. However, it has been limited to energy consumption and GHG, and has not included air pollution (AP). Therefore, we estimated GHG and AP integrated emissions from the energy consumed by Seoul National University of Science and Technology during the years between 2010 and 2012. In addition, the effect of alternative energy use scenario was analysed. We estimated GHG using IPCC guideline and Guidelines for Local Government Greenhouse Inventories, and AP using APEMEP/EEA Emission Inventory Guidebook 2013 and Air Pollutants Calculation Manual. The estimated annual average GHG emission was $11,420tonCO_{2eq}$, of which 27% was direct emissions from fuel combustion sectors, including stationary and mobile source, and the remaining 73% was indirect emissions from purchased electricity and purchased water supply. The estimated annual average AP emission was 7,757 kgAP, of which the total amount was from direct emissions only. The annual GHG emissions from city gas and purchased electricity usage per unit area ($m^2$) of the university buildings were estimated as $15.4kgCO_{2eq}/m^2$ and $42.4tonCO_{2eq}/m^2$ and those per person enrolled in the university were $210kgCO_{2eq}$/capita and $577kgCO_{2eq}$/capita. Alternative energy use scenarios revealed that the use of all alternative energy sources including solar energy, electric car and rain water reuse applicable to the university could reduce as much as 9.4% of the annual GHG and 34% of AP integrated emissions, saving approximately 400 million won per year, corresponding to 14% of the university energy budget.