• Title/Summary/Keyword: Mobile antenna

Search Result 699, Processing Time 0.039 seconds

Design of Inverted-F Antenna Using a Coupling Feed (커플링 급전 구조를 사용한 역 F형 안테나의 설계)

  • Kim, Sang-Won;Choi, Hak-Keun;Park, Jae-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.726-733
    • /
    • 2010
  • This paper propose the printed inverted-F antenna using the coupling feed for the mobile phone. The coupling feed can normally leads the additional capacitances in the antenna, so the high inductive reactance of the antenna can be partly compensated. In this paper, it is shown that the bandwidth of the proposed antenna using the coupling feed is improved at $824{\sim}960$ MHz and $1,710{\sim}2,390$ MHz. Then it is compared with the simple direct feed to confirm the improvement of the bandwidth. The proposed antenna covers GSM850/GSM950/DCS/USPCS/WCDMA/Wibro and has the maximum gain of -$4.794{\sim}1.648$ dBi and shows omnidirectional patterns over the operating bands.

CPW Feed Wideband U-slot Microstrip Antenna

  • Lee, Jong-In;Lee, Byoung-Moo;Yoon, Young-Joong
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.1
    • /
    • pp.11-15
    • /
    • 2002
  • In this paper, we have proposed the new configuration of wideband antenna using CPW fred lines. The proposed antenna has CPW feed lines and U-slot to achieve wade bandwidth with good impedance matching. The use of CPW feed line can decrease the number of substrates. It is compared with the conventional antenna find by a microstrip fled line. The parameters of CPW fred lines were studied by using the quasi-static approximation which is based on the conformal mapping method. The analysis of CPW discontinuities such as the tapered-step structure and the open ended gap were studied by using the quasi-static approximation which is based on the boundary element method. Also, the equivalent circuit model of multi-layer antenna were proposed using the cavity model. Experiment results of the proposed antenna 7how wide-bandwidth characteristics and good radiation patterns in passband.

Broadband Microstrip Patch Antenna

  • Lee Ho-Jun;Lee Jae-Young;Kim Jong-Kyu
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.230-233
    • /
    • 2003
  • In this paper, the wideband microstrip patch antennas for the Personal communications Service $(PCS\;:\;1750\~1870\;MHz)$ and International Mobile Telecommunications-2000 $(IMT-2000\;:\;1920\~2170\;MHz)$ dual band are studied. Experimental and simulation results on the dual band antenna are presented. Simulation results are in good agreement with measurements. The experimental and simulation results confirm the wideband characteristics of the antenna. The studied antenna satisfied the wideband characteristics that are required characteristics for above 420 MHz impedance bandwidth for the PCS and IMT-2000 dual band antenna. In this paper, through the designing of a dual band antenna, we have presented the availability for PCS & IMT-2000 base station antenna. An impedance bandwidth of $31\%(VSWR<1.5,\;615\;MHz)$ and a maximum gain of 7dBi can be achieved. The radiation pattern is stable across the passband.

  • PDF

A Study on Fractal Antenna Design and Fabrication for Multi-Band Applications (다중대역용 프랙탈 안테나의 설계 및 제작에 관한 연구)

  • Kim, Kab-Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.5
    • /
    • pp.81-86
    • /
    • 2011
  • In this paper, fractal microstrip patch antenna in a semicircle, by designing a multi-resonant antenna was improved by bandwidth issues, including the IEEE 802.11 wireless LAN and IEEE802.16e-band mobile WiMax specification both of which can contain non-directional antenna design and measured characteristics of the antenna for multi-resonant resonant frequency, impedance matching, radiation pattern, brilliantly polarity and multiple independent frequencies that can be controlled to meet the three semicircular wireless communications by inserting fractal patch antenna was designed.

Coupling mechanism of a loop-type ground radiation antenna

  • Zahid, Zeeshan;Kim, Hyeongdong
    • ETRI Journal
    • /
    • v.41 no.4
    • /
    • pp.528-535
    • /
    • 2019
  • The coupling mechanism of a loop-type ground radiation antenna is investigated in this paper. We use the equivalent circuit model of the antenna and a full-wave simulation to explain the coupling mechanism of the antenna. We analyze the effects of various antenna parameters on the coupling between the antenna element and the ground plane to examine the conditions for enhancing the coupling. Based on simulations with the equivalent circuit model, full-wave simulations, and measurements, we propose optimal design considerations for the antenna. The findings of this study will aid the design and understanding of loop-type ground radiation antennas for mobile devices.

Patent Trends on Reconfigurable Intelligent Surface (지능형 재구성 안테나 특허 동향)

  • Kwon, D.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.119-132
    • /
    • 2021
  • To accommodate various mobile communication frequency bands, the study of metamaterial antennas have begun since the mid-2000s to solve the Trilemma problem between antenna gain-occupied bandwidth-size. As an adaptive reconfiguration function is required in a multi-array antenna system since 4G, the metamaterial array antenna using low-power variable elements has been used to change the basic structure of the antenna. Recently, reconfigurable intelligent surface (RIS), which is made of metasurface with reconfigurability, has been studied to effectively cope with the randomly varying radio channels and be used for various purposes such as reflection/transmission/modulation. As a result of RIS-related patent information analysis in this study, it was confirmed that most of the patents are metamaterial antennas and metamaterial array antennas, but the metasurface antenna technology was in the early stages. Particularly, as the intelligent metasurface antenna is in a more initial stage, the investment to R&D of RIS is urgent to secure patent competitiveness in B5G and 6G.

A Study on Characteristics of Triple-band Plastic Chip Antenna for Mobile Terminal using Foamex Materials (Formax 매질을 이용한 이동통신 단말기용 삼중대역 플라스틱 칩 안테나에 관한 연구)

  • Lee, Young-Hun;Song, Sung-Hae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2210-2216
    • /
    • 2007
  • In this paper, triple-band plastic chip antennas for mobile terminal are investigated. Plastic chip antenna is composed of Foamex material with circle of PVC(Polyvilyl chloride). For its electric characteristics, the dielectric constant is 1.9, the insulation intensity is 112KV/cm. Plastic chip antennas are don't tend to break easily against to external shock, have more gain and efficiency than ceramic chip antennas. Triple-band plastic chip antennas of four type are implemented and experimented. From the experiments results, the antenna resonate at the triple-band, the gain of the antennas has about above -2dB, the pattern is ommidirectional the same as the conventional antennas. So, the antennas realized with Foamex material will be application for mobile phone antenna operated at the triple band which is cellular band and Korea-PCS band and ISM band or the antenna for other wireless communication system.

Conformal Horn Antenna for Circular Polarization using Planar-type Radiator (평판형 방사소자를 이용한 원형편파용 혼 안테나 설계)

  • Jung, Young-Bae
    • Journal of IKEEE
    • /
    • v.16 no.3
    • /
    • pp.173-176
    • /
    • 2012
  • This paper introduces a novel horn antenna for circular polarization using a planar-type radiator. This antenna can be divided to two parts, microstrip antenna and square horn. The microstrip antenna has the role of feeder and polarizer of the horn antenna, and it is designed to stacked type having metal spacer for high gain, high isolation and wideband characteristic. Using the proposed antenna structure, the horn antenna needs not additional structure such as feeder and polarizer, and the size of it can be considerably reduced. The horn antenna has typical gain of 8dBi and 3-dB axial-ratio bandwidth around 4.9%.This antenna can widely used for various antenna system for mobile and satellite communication using circular polarization expecially in high frequency band.

A Broadband Microstrip Array Antenna for 3G Smart Antenna System Testbed

  • Rashid, Zainol Abidin Abdul;Islam, Mohammad Tariqul;Jiunn, Ng Kok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.5 no.1
    • /
    • pp.43-59
    • /
    • 2006
  • A compact and broadband $4\times1$ array antenna was developed for 3G smart antenna system testbed. The $4\times1$ uniform linear away antenna was designed to operate at 1.885 to 2.2GHz with a total bandwidth of 315MHz. The array elements were based on the novel broadband L-probe fed inverted hybrid E-H (LIEH) shaped microstrip patch, which offers 22% size reduction to the conventional rectangular microstrip patch antenna. For steering the antenna beam, a commercial variable attenuator (KAT1D04SA002), a variable phase shifter (KPH350SC00) with four units each, and the corporate 4-ways Wilkinson power divider which was fabricated in-house were integrated to form the beamforming feed network. The developed antenna has an impedance bandwidth of 17.32% $(VSWR\leq1.5)$, 21.78% $(VSWR\leq2)$ with respect to center frequency 2.02GHz and with an achievable gain of 11.9dBi. The design antenna offer a broadband, compact and mobile solution for a 3G smart antenna testbed to fully characterized the IMT-2000 radio specifications and system performances.

  • PDF

A Broadband Microstrip Array Antenna for 3G Smart Antenna System Testbed

  • Rashid, Zainol Abidin Abdul;Islam, Mohammad Tariqul;Jiunn, Ng Kok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.7 no.1
    • /
    • pp.41-58
    • /
    • 2007
  • A compact and broadband $4{\times}1$ array antenna was developed for 3G smart antenna system testbed. The $4{\times}1$ uniform linear array antenna was designed to operate at 1.885 to 2.2GHz with a total bandwidth of 315MHz. The array elements were based on the novel broadband L-probe fed inverted hybrid E-H (LIEH) shaped microstrip patch, which offers 22% size reduction to the conventional rectangular microstrip patch antenna. For steering the antenna beam, a commercial variable attenuator (KAT1D04SA002), a variable phase shifter (KPH350SC00) with four units each, and the corporate 4-ways Wilkinson power divider which was fabricated in-house were integrated to form the beamforming feed network. The developed antenna has an impedance bandwidth of 17.32% ($VSWR{\leq}1.5$), 21.78% ($VSWR{\leq}2$) with respect to center frequency 2.02GHz and with an achievable gain of 11.9dBi. The design antenna offer a broadband, compact and mobile solution for a 3G smart antenna testbed to fully characterized the IMT-2000 radio specifications and system performances.

  • PDF