• Title/Summary/Keyword: Mobile Trusted Module

Search Result 13, Processing Time 0.03 seconds

A Study on Secure Key Backup/Recovery Scheme for Device based on Mobile Trusted Module (Mobile Trusted Module 기반 단말에서의 안전한 키 백업 및 복구 방안에 대한 연구)

  • Kang, Dong-Wan;Jun, Sung-Ik;Lee, Im-Yeoung
    • The KIPS Transactions:PartC
    • /
    • v.16C no.3
    • /
    • pp.335-346
    • /
    • 2009
  • Mobile environments are evolving the main communication environment as a develops of communication technology. In mobile environments, sensitive information can be compromised on-line, so demand for security has increased. Also, mobile devices that provide various services are in danger from malware and illegal devices, phishing and sniffing etc, and the privacy. Therefore, MTM(Mobile Trusted Module) is developed and promoted by TCG(Trusted Computing Group), which is an industry standard body to enhance the security level in the mobile computing environment. MTM protects user privacy and platform integrity, because it is embedded in the platform, and it is physically secure. However, a security approach is required when secret data is migrated elsewhere, because MTM provides strong security functions. In this paper, we analyze the TCG standard and migration method for cryptographic key, then we propose a secure migration scheme for cryptographic key using key Backup/Recovery method.

A Secure Maintenance Scheme of Secret Data on Trusted Mobile Platform Environment (Trusted Mobile Platform 환경에서의 안전한 비밀 데이터 유지(이전) 방안)

  • Kang, Dong-Wan;Lee, Im-Yeong;Han, Jin-Hee;Jun, Sung-Ik
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.4
    • /
    • pp.79-91
    • /
    • 2008
  • Modern society as an information society, a lot of information is communicated in on-line. Specially, mobile environment based on radio communication has a characteristic of flexibility compared with wire communication and is developed rapidly. However, the more mobile technology is developed the more security for sensitive information is needed. Therefore, MTM(Mobile Trusted Module) is developed and promoted by TCG(Trusted Computing Group), which is an industry standard body to enhance the security level in the mobile computing environment. MTM, hardware security module for mobile environment, offers user's privacy protection, platform integrity verification, and individual platform attestation. On the other hand, secure migration scheme is required in case secret data or key is transferred from one platform to the other platform. In this paper, we analyze migration schemes which were described in TCG standard and other papers and then propose security maintenance scheme for secret data using USIM(Universal Subscriber Identity Module).

Design of a Mobile DAA Model through Java Test Module for the DAA Protocol (DAA 자바 실험모듈 구현을 통한 모바일 DAA 모델 설계)

  • Yang, Seok-Hwan;Lee, Ki-Yeal;Chung, Mok-Dong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.8
    • /
    • pp.773-777
    • /
    • 2008
  • Today's mobile devices have characteristic of random mobility in the heterogeneous networks. Thus they should have various kinds of security requirements. To satisfy these requirements, there are many researches on security and authentication for mobile devices. TCG(Trusted Computing Group) designed TPM(Trusted Platform Module) for providing privacy and authentication to users. Also TCG suggest a protocol, called DAA(Direct Anonymous Attestation) which uses zero knowledge proof theory. In this paper, we will implement DAA protocol using Java and show the efficiency and the problems in the DAA protocol. Finally, we will suggest an efficient mobile DAA model through Java test module for the DAA protocol.

Design of Cryptographic Hardware Architecture for Mobile Computing

  • Kim, Moo-Seop;Kim, Young-Sae;Cho, Hyun-Sook
    • Journal of Information Processing Systems
    • /
    • v.5 no.4
    • /
    • pp.187-196
    • /
    • 2009
  • This paper presents compact cryptographic hardware architecture suitable for the Mobile Trusted Module (MTM) that requires low-area and low-power characteristics. The built-in cryptographic engine in the MTM is one of the most important circuit blocks and contributes to the performance of the whole platform because it is used as the key primitive supporting digital signature, platform integrity and command authentication. Unlike personal computers, mobile platforms have very stringent limitations with respect to available power, physical circuit area, and cost. Therefore special architecture and design methods for a compact cryptographic hardware module are required. The proposed cryptographic hardware has a chip area of 38K gates for RSA and 12.4K gates for unified SHA-1 and SHA-256 respectively on a 0.25um CMOS process. The current consumption of the proposed cryptographic hardware consumes at most 3.96mA for RSA and 2.16mA for SHA computations under the 25MHz.

Data Firewall: A TPM-based Security Framework for Protecting Data in Thick Client Mobile Environment

  • Park, Woo-Ram;Park, Chan-Ik
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.4
    • /
    • pp.331-337
    • /
    • 2011
  • Recently, Virtual Desktop Infrastructure (VDI) has been widely adopted to ensure secure protection of enterprise data and provide users with a centrally managed execution environment. However, user experiences may be restricted due to the limited functionalities of thin clients in VDI. If thick client devices like laptops are used, then data leakage may be possible due to malicious software installed in thick client mobile devices. In this paper, we present Data Firewall, a security framework to manage and protect security-sensitive data in thick client mobile devices. Data Firewall consists of three components: Virtual Machine (VM) image management, client VM integrity attestation, and key management for Protected Storage. There are two types of execution VMs managed by Data Firewall: Normal VM and Secure VM. In Normal VM, a user can execute any applications installed in the laptop in the same manner as before. A user can access security-sensitive data only in the Secure VM, for which the integrity should be checked prior to access being granted. All the security-sensitive data are stored in the space called Protected Storage for which the access keys are managed by Data Firewall. Key management and exchange between client and server are handled via Trusted Platform Module (TPM) in the framework. We have analyzed the security characteristics and built a prototype to show the performance overhead of the proposed framework.

A Property-Based Data Sealing using the Weakest Precondition Concept (최소 전제조건 개념을 이용한 성질 기반 데이터 실링)

  • Park, Tae-Jin;Park, Jun-Cheol
    • Journal of Internet Computing and Services
    • /
    • v.9 no.6
    • /
    • pp.1-13
    • /
    • 2008
  • Trusted Computing is a hardware-based technology that aims to guarantee security for machines beyond their users' control by providing security on computing hardware and software. TPM(Trusted Platform Module), the trusted platform specified by the Trusted Computing Group, acts as the roots for the trusted data storage and the trusted reporting of platform configuration. Data sealing encrypts secret data with a key and the platform's configuration at the time of encryption. In contrast to the traditional data sealing based on binary hash values of the platform configuration, a new approach called property-based data sealing was recently suggested. In this paper, we propose and analyze a new property-based data sealing protocol using the weakest precondition concept by Dijkstra. The proposed protocol resolves the problem of system updates by allowing sealed data to be unsealed at any configuration providing the required property. It assumes practically implementable trusted third parties only and protects platform's privacy when communicating. We demonstrate the proposed protocol's operability with any TPM chip by implementing and running the protocol on a software TPM emulator by Strasser. The proposed scheme can be deployed in PDAs and smart phones over wireless mobile networks as well as desktop PCs.

  • PDF

Security Core Technology Implementation for MTM Hardware-Based Smart Devices (MTM하드웨어 기반 스마트 단말 보안 핵심기술 구현)

  • Kim, Jeong Nyeo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.6
    • /
    • pp.1455-1459
    • /
    • 2016
  • Recently, the frequency of dealing important information regarding financial services like paying through smart device or internet banking on smart device has been increasing. Also, with the development of smart device execution environment towards open software environment, it became easier for users to download and use random application software, and its security aspect appears to be weakening. This study will inspect features of hardware-based smart device security technology. Furthermore, this study will propose a realization method in MTM hardware-based secure smart device execution environment for application software runs that in smart device.

모바일 플랫폼용 공통보안핵심 모듈 기술

  • Kim Moo-Seop;Shin Jin-A;Park Young-Soo;Jun Sung-Ik
    • Review of KIISC
    • /
    • v.16 no.3
    • /
    • pp.7-17
    • /
    • 2006
  • TCG(Trusted Computing Group)는 더욱 안전한 컴퓨팅 환경의 구현을 목적으로 설립된 업계 컨소시엄으로, 데이터의 신뢰성을 제공하기 위하여 TPM(Trusted Platform Module)으로 불리는 신뢰의 기본을 제공하는 핵심 하드웨어의 사용을 제안하고 있다. 최근 모바일 디바이스의 성능 향상에 따라 다양한 응용들의 지원이 가능해지고, 네트워크를 통한 소프트웨어의 업데이트 및 응용프로그램의 다운로드 등이 가능한 개방형 플랫폼으로의 변화에 따른 디지털 컨버젼스는 TMP(Trusted Mobile Platform)라는 새로운 모바일 플랫폼용 규격의 사용을 필요로 하고 있다. 본 고에서는 기존 컴퓨팅 환경과 모바일 플랫폼에 핵심 보안 모듈인 TPM 기술의 국내 외 기술의 동향과 핵심 요소들에 대한 기술적 개념들을 살펴본다.

Implementation of a MTM-based secure OTP Generator for IoT Devices (IoT 디바이스를 위한 MTM 기반의 안전한 OTP 생성기 구현)

  • Kim, Young-Sae;Han, Jin-Hee;Jeon, Yong-Sung;Kim, Jung-Nyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.4
    • /
    • pp.199-206
    • /
    • 2015
  • In this paper, we present the implementation of a secure OTP(One Time Password) generator for IoT(Internet of Things) devices. Basically, MTM(Mobile Trusted Module) is used and expanded considering secure IoT services. We combine the MTM architecture with a new hardware-based OTP generation engine. The new architecture is more secure, offering not only the security of devices but also that of the OTP service. We have implemented and verified the MTM-based OTP generator on a real mobile platform embedded with the MTM chip. The proposed method can be used as a solution for enhancing security of IoT devices and services.

A Study on the Remote Authentication Method between IoT Devices using a Trusted Security Module (신뢰 보안 모듈을 이용한 IoT 기기 간 원격 인증 방법에 관한 연구)

  • Han, Jin-Hee;Jeon, YongSung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.587-590
    • /
    • 2015
  • IoT 환경에서 서로 다른 사양을 갖는 기기 간 통신에서의 보안 취약성, 사용자의 프라이버시 데이터 유출, 인가 받지 않은 기기나 사용자로 인한 기기 위 변조, 기기 오작동 등의 보안 위협 발생 가능성이 증가할 것이라는 예측과 더불어 다양한 보안 위협에 대응할 수 있는 보안 기술에 대한 관심이 높아지고 있다. 본 논문에서는 신뢰 보안 모듈과 클라우드 서버를 이용한 기기 간 원격 인증 및 기기 관리 방법에 대해 기술한다. 수 많은 기기가 인터넷으로 연결되어 운용되는 IoT 환경에서 신뢰 보안 모듈을 활용한 IoT 기기 간 원격 인증, 기기 보안 업데이트 및 안전한 기기 관리 기능 등을 통해 보다 안전하고 신뢰할 수 있는 IoT 서비스 제공이 가능해짙 수 있을 것이다.