• Title/Summary/Keyword: Mobile TPC-C

Search Result 3, Processing Time 0.02 seconds

The Implementation and Performance Measurement for Hadoop-Based Android Mobile TPC-C Application (모바일 TPC-C: 하둡 기반 안드로이드 모바일 TPC-C 어플리케이션 구현 및 성능 측정)

  • Jang, Han-Uer;No, Jaechun;Kim, Byung-Moon;Lee, Ji-Eun;Park, Sung-Soon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.203-211
    • /
    • 2013
  • Due to the rapid growth of mobile devices and applications, mobile cloud computing is becoming an important platform in the development of cloud services. However, the mobile cloud computing is facing many challenges in terms of the computing resources and communications. One of them is the performance issue between mobile devices and cloud server. In the paper, we implemented a hadoop-based android mobile application, called mobile TPC-C, and used it for evaluating the performance aspect between mobile devices and cloud server. The mobile TPC-C was implemented based on the existing TPC-C, to make it possible to execute on top of android mobile devices. The performance measurement using mobile TPC-C was executed on various transactions while changing the number of mobile clients. By comparing it to the evaluation on the personal PC, we tried to point out the important aspects affecting the performance improvement between mobile clients and cloud server.

Performance Analysis of Flash Translation Layer using TPC-C Benchmark (플래시 변환 계층에 대한 TPC-C 벤치마크를 통한 성능분석)

  • Park, Sung-Hwan;Jang, Ju-Yeon;Suh, Young-Ju;Park, Won-Joo;Park, Sang-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.2
    • /
    • pp.201-205
    • /
    • 2008
  • The flash memory is widely used as a main storage of embedded devices. It is adopted as a storage of database as growing the capacity of the flash memory. We run TPC-C benchmark on various FTL algorithms. But, the database shows poor performance on flash memory because the characteristic of I/O requests is full random. In this paper, we show the performance of all existing FTL algorithms is very poor. Especially, the FTL algorithm known as good at small mobile equipment shows worst performance. In addition, the chip-inter leaving which is a technique to improve the performance of the flash memory doesn't work well. In this paper, we inform you the reason that we need a new FTL algorithm and the direction for the database in the future.

Implementation of LTE Transport Channel on Multicore DSP Software Defined Radio Platform (멀티코어 DSP 기반 소프트웨어 정의 라디오 플랫폼을 활용한 LTE 전송 채널의 구현)

  • Lee, Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.4
    • /
    • pp.508-514
    • /
    • 2020
  • To implement the continuously evolving mobile communication standards such as Long Term Evolution (LTE) and 5G, the Software Defined Radio (SDR) concept provides great flexibility and efficiency. For many years, a high-end Digital Signal Processor (DSP) System on Chip (SoC) has been developed to support multicore and various hardware coprocessors. This paper introduces the implementation of the SDR platform hardware using TI's TCI663x chip. Using the platform, LTE transport channel is implemented by interworking multicore DSP with Bit rate Coprocessor (BCP) and Turbo Decoder Coprocessor (TCP) and the performance is evaluated according to various implementation options. In order to evaluate the performance of the implemented LTE transport channel, LTE base station system was constructed by combining FPGA main board for physical channels, SDR platform board, and RF & Antenna board.