• 제목/요약/키워드: Mobile Search

검색결과 766건 처리시간 0.024초

얼굴 메이크업을 도와주는 지능형 스마트 거울 앱의설계 (Design of an Intellectual Smart Mirror Appication helping Face Makeup)

  • 오선진;이윤석
    • 문화기술의 융합
    • /
    • 제8권5호
    • /
    • pp.497-502
    • /
    • 2022
  • 최근 젊은 세대를 중심으로 정보의 유통이나 공유 수단으로 텍스트보다는 비주얼 기반의 정보 전달을 선호하는 경향이 뚜렷하며, 인터넷상의 유투브나 1인 방송 등을 통한 정보의 유통이 일상화되고 있다. 즉, 젊은 세대들은 대부분의 원하는 정보를 이러한 유통 과정을 거쳐 습득하게 되며 활용하는 상황이다. 또한, 많은 젊은 세대들은 자신을 개성있게 꾸미고 장식하는 데에 매우 과감하고 적극적이다. 얼굴 화장이나 헤어 스타일링 및 패션 연출에 있어 남녀구분 없이 적극적인 표현과 시도를 통해 개인의 개성을 거리낌이 없이 연출하는 경향이 있다. 특히, 얼굴 메이크업은 여자들은 물론이고 최근 남자들 사이에서도 관심의 대상이 되고 있으며, 자신의 개성을 표출할 수 있는 중요한 수단으로 인식되는 상황이다. 본 연구에서는 이러한 시대적 흐름에 발맞추어 자신의 독특한 개성을 나타내기 위한 얼굴메이크업을 연출하기 위해 자신의 얼굴 모양, 헤어 컬러 및 스타일, 피부 톤, 패션 스타일과 의상 컬러 등과 잘 어울리는 얼굴 메이크업을 구현하도록 인터넷상의 유명한 전문 메이크업 아티스트 들의 유투브나 1인 방송 영상 중 관련영상을 효율적으로 검색하여 추천하고, 사용자의 평소 검색 패턴과 외모 특징들을 학습시켜 축적된 정보를 바탕으로 최적의 솔루션을 제공할 수 있도록 인공지능 기법을 도입하며, 추천된 영상을 통해 자세한 메이크업 과정을 실제 단계별로 수행하면서 메이크업 스킬을 습득하도록 하는 지능형 스마트 거울 앱을 설계하고 구현하고자 한다.

머신러닝 기반의 뷰티 커머스 고객 세그먼트 분류 및 활용 방안: 언택트 서비스 중심으로 (A Study of the Beauty Commerce Customer Segment Classification and Application based on Machine Learning: Focusing on Untact Service)

  • 윤상혁;최윤진;이소현;김희웅
    • 경영정보학연구
    • /
    • 제22권4호
    • /
    • pp.75-92
    • /
    • 2020
  • 인구 및 세대 구조가 변화면서 점차 대면 관계를 꺼리는 고객의 태도 변화가 정보기술의 발달과 스마트폰의 확산으로 더욱 커지고 있다. 이는 정보기술에 익숙해진 현대 고객들의 소비패턴인 효율성 및 신속성과도 부합되는 것으로, 오프라인 망 중심의 유통회사들이 판매 및 서비스 방식을 언택트로 전환하려는 움직임이 활발해지고 있다. 최근 다양한 분야에서 언택트 서비스가 활성화되고 있지만, 뷰티 제품의 경우 고객의 피부타입 및 상태에 따라 제품 선택이 쉽지 않으므로 비대면을 통해 제품을 추천하기가 쉽지 않다. 이와 관련하여 온라인 뷰티 분야에서 제품 추천을 위한 추천시스템 개발 및 추천 관련 연구들이 수행되었지만, 대부분이 설문조사 방법이나 소셜 데이터를 이용하여 추천 알고리즘을 개발한 연구들이었다. 즉, 고객의 피부타입이나 제품 선호도 등의 실제 사용자 정보를 기반으로 세그먼트를 분류한 연구는 부족하였다. 그리하여, 본 연구에서는 뷰티 분야에서의 언택트 서비스 중의 하나인 모바일 애플리케이션의 고객 정보와 검색 로그 데이터를 기반으로 머신러닝 기법의 K-prototypes 알고리즘을 이용하여 고객 세그먼트를 새롭게 분류하고, 이를 기반으로 언택트 마케팅 전략 방안을 제안한다. 본 연구는 머신러닝 기법을 이용하여 새롭게 고객 세그먼트를 분류함으로써 관련 기존 문헌의 범위를 확장하였다. 더불어, 언택트 서비스라는 새로운 소비 트렌드를 반영하여 고객 세그먼트를 분류하고, 이를 기반으로 뷰티 분야의 언택트 서비스에 활용할 수 있는 구체적인 방안을 제시했다는 실무적 의의가 있다.

합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로 (Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image)

  • 서이안;신경식
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.1-19
    • /
    • 2018
  • 최근 딥러닝은 오디오, 텍스트 및 이미지 데이터와 같은 비 체계적인 데이터를 대상으로 다양한 추정, 분류 및 예측 문제에 사용 및 적용되고 있다. 특히, 의류산업에 적용될 경우 딥러닝 기법을 활용한 의류 인식, 의류 검색, 자동 제품 추천 등의 심층 학습을 기반으로 한 응용이 가능하다. 이 때의 핵심모형은 합성곱 신경망을 사용한 이미지 분류이다. 합성곱 신경망은 입력이 전달되고 출력에 도달하는 과정에서 가중치와 같은 매개 변수를 학습하는 뉴런으로 구성되고, 영상 분류에 가장 적합한 방법론으로 사용된다. 기존의 의류 이미지 분류 작업에서 대부분의 분류 모형은 의류 이미지 자체 또는 전문모델 착용 의류와 같이 통제된 상황에서 촬영되는 온라인 제품 이미지를 사용하여 학습을 수행한다. 하지만 본 연구에서는 통제되지 않은 상황에서 촬영되고 사람들의 움직임과 다양한 포즈가 포함된 스트릿 패션 이미지 또는 런웨이 이미지를 분류하려는 상황을 고려하여 분류 모형을 훈련시키는 효과적인 방법을 제안한다. 이동성을 포착하는 런웨이 의류 이미지로 모형을 학습시킴으로써 분류 모형의 다양한 쿼리 이미지에 대한 적응력을 높일 수 있다. 모형 학습 시 먼저 ImageNet 데이터셋을 사용하여 pre-training 과정을 거치고 본 연구를 위해 수집된 32 개 주요 패션 브랜드의 2426개 런웨이 이미지로 구성된 데이터셋을 사용하여 fine-tuning을 수행한다. 학습 과정의 일반화를 고려해 10번의 실험을 수행하고 제안된 모형은 최종 테스트에서 67.2 %의 정확도를 기록했다. 본 연구 모형은 쿼리 이미지가 런웨이 이미지, 제품 이미지 또는 스트릿 패션 이미지가 될 수 있는 다양한 분류 환경에 적용될 수 있다. 구체적으로는 패션 위크에서 모바일 어플리케이션 서비스를 통해 브랜드 검색을 용이하게 하는 서비스를 제공하거나, 패션 잡지사의 편집 작업에 사용되어 브랜드나 스타일을 분류하고 라벨을 붙일 수 있으며, 온라인 쇼핑몰에서 아이템 정보를 제공하거나 유사한 아이템을 추천하는 등의 다양한 목적에 적용될 수 있다.

링크드 데이터를 이용한 인터랙티브 요리 비디오 질의 서비스 시스템 (An Interactive Cooking Video Query Service System with Linked Data)

  • 박우리;오경진;홍명덕;조근식
    • 지능정보연구
    • /
    • 제20권3호
    • /
    • pp.59-76
    • /
    • 2014
  • 스마트 미디어 장치의 발달로 인하여 시공간적인 제약이 없이 비디오를 시청 가능한 환경이 제공됨에 따라 사용자의 시청행태가 수동적인 시청에서 능동적인 시청으로 계속해서 변화하고 있다. 사용자는 비디오를 시청하면서 비디오를 볼 뿐 아니라 관심 있는 내용에 대한 세부적인 정보를 검색한다. 그 결과 사용자와 미디어 장치간의 인터랙션이 주요 관심사로 등장하였다. 이러한 환경에서 사용자들은 일방적으로 정보를 제공해주는 것보다는 자신이 원하는 정보를 웹 검색을 통해 사용자 스스로 정보를 찾지 않고, 쉽고 빠르게 정보를 얻을 수 있는 방법의 필요성을 인식하게 되었으며 그에 따라 인터랙션을 직접 수행하는 것에 대한 요구가 증가하였다. 또한 많은 정보의 홍수 속에서 정확한 정보를 얻는 것이 중요한 이슈가 되었다. 이러한 사용자들의 요구사항을 만족시키기 위해 사용자 인터랙션 기능을 제공하고, 링크드 데이터를 적용한 시스템이 필요한 상황이다. 본 논문에서는 여러 분야 중에서 사람들이 가장 관심 있는 분야중 하나인 요리를 선택하여 문제점을 발견하고 개선하기 위한 방안을 살펴보았다. 요리는 사람들이 지속적인 관심을 갖는 분야이다. 레시피, 비디오, 텍스트와 같은 요리에 관련된 정보들이 끊임없이 증가하여 빅 데이터의 한 부분으로 발전하였지만 사용자와 요리 콘텐츠간의 인터랙션을 제공하는 방법과 기능이 부족하고, 정보가 부정확하다는 문제점을 가지고 있다. 사용자들은 쉽게 요리 비디오를 시청할 수 있지만 비디오는 단 방향으로만 정보를 제공하기 때문에 사용자들의 요구사항을 충족시키기 어렵고, 검색을 통해 정확한 정보를 얻는 것이 어렵다. 이러한 문제를 해결하기 위하여 본 논문에서는 요리 비디오 시청과 동시에 정보제공을 위한 UI(User Interface), UX(User Experience)를 통해 사용자의 편의성을 고려한 환경을 제시하고, 컨텍스트에 맞는 정확한 정보를 제공하기 위해 링크드 데이터를 이용하여 사용자와 비디오 간에 인터랙션을 위한 요리보조 서비스 시스템을 제안한다.

모바일 랜드마크 가이드 : LOD와 문맥적 장치 기반의 실외 증강현실 (A Mobile Landmarks Guide : Outdoor Augmented Reality based on LOD and Contextual Device)

  • 조비성;누르지드;장철희;이기성;조근식
    • 지능정보연구
    • /
    • 제18권1호
    • /
    • pp.1-21
    • /
    • 2012
  • 최근 스마트폰의 등장으로 인해 사용자들은 시간과 공간의 제약 없이 스마트폰을 이용한 새로운 의사소통의 방법을 경험하고 있다. 이러한 스마트폰은 고화질의 컬러화면, 고해상도 카메라, 실시간 3D 가속그래픽과 다양한 센서(GPS와 Digital Compass) 등을 제공하고 있으며, 다양한 센서들은 사용자들(개발자, 일반 사용자)로 하여금 이전에 경험하지 못했던 서비스를 경험할 수 있도록 지원하고 있다. 그 중에서 모바일 증강현실은 스마트폰의 다양한 센서들을 이용하여 개발할 수 있는 대표적인 서비스 중 하나이며, 이러한 센서들을 이용한 다양한 방법의 모바일 증강현실 연구들이 활발하게 진행되고 있다. 모바일 증강현실은 크게 위치 정보 기반의 서비스와 내용 기반 서비스로 구분할 수 있다. 위치 정보 기반의 서비스는 구현이 쉬운 장점이 있으나, 증강되는 정보의 위치가 실제의 객체의 정확한 위치에 증강되는 정보가 제공되지 않는 경우가 발생하는 단점이 존재한다. 이와 반대로, 내용 기반 서비스는 정확한 위치에 증강되는 정보를 제공할 수 있으나, 구현 및 데이터베이스에 존재하는 이미지의 양에 따른 검색 속도가 증가하는 단점이 존재한다. 본 논문에서는 위치 정보 기반의 서비스와 내용기반의 서비스의 장점들을 이용한 방법으로, 스마트폰의 다양한 센서(GPS, Digital Compass)로 부터 수집된 정보를 이용하여 데이터베이스의 탐색 범위를 줄이고, 탐색 범위에 존재하는 이미지들의 특징 정보를 기반으로 실제의 랜드마크를 인식하고, 인식한 랜드마크의 정보를 링크드 오픈 데이터(LOD)에서 검색하여 해당 정보를 제공하는 랜드마크 가이드 시스템을 제안한다. 제안하는 시스템은 크게 2개의 모듈(랜드마크 탐색 모듈과 어노테이션 모듈)로 구성되어있다. 첫 번째로, 랜드마크 탐색 모듈은 스마트폰으로 인식한 랜드마크(건물, 조형물 등)에 해당하는 정보들을 (텍스트, 사진, 비디오 등) 링크드 오픈 데이터에서 검색하여 검색된 결과를 인식한 랜드마크의 정확한 위치에 정보를 제공하는 역할을 한다. 스마트폰으로부터 입력 받은 이미지에서 특징점 추출을 위한 방법으로는 SURF 알고리즘을 사용했다. 또한 실시간성을 보장하고 처리 속도를 향상 시키기 위한 방법으로는 입력 받은 이미지와 데이터베이스에 있는 이미지의 비교 연산을 수행할 때 GPS와 Digital Compass의 정보를 사용하여 그리드 기반의 클러스터링을 생성하여 탐색 범위를 줄임으로써, 이미지 검색 속도를 향상 시킬 수 있는 방법을 제시하였다. 두 번째로 어노테이션 모듈은 사용자들의 참여에 의해서 새로운 랜드마크의 정보를 링크드 오픈 데이터에 추가할 수 있는 기능을 제공한다. 사용자들은 키워드를 이용해서 링크드 오픈 데이터로에서 관련된 주제를 검색할 수 있으며, 검색된 정보를 수정하거나, 사용자가 지정한 랜드마크에 해당 정보를 표시할 수 있도록 지정할 수 있다. 또한, 사용자가 지정하려고 하는 랜드마크에 대한 정보가 존재하지 않는다면, 사용자는 랜드마크의 사진을 업로드하고, 새로운 랜드마크에 대한 정보를 생성하는 기능을 제공한다. 이러한 과정은 시스템이 카메라로부터 입력 받은 대상(랜드마크)에 대한 정확한 증강현실 컨텐츠를 제공하기 위해 필요한 URI를 찾는데 사용되며, 다양한 각도의 랜드마크 사진들을 사용자들에 의해 협업적으로 생성할 수 있는 환경을 제공한다. 본 연구에서 데이터베이스의 탐색 범위를 줄이기 위해서 랜드마크의 GPS 좌표와 Digital Compass의 정보를 이용하여 그리드 기반의 클러스터링 방법을 제안하여, 그 결과 탐색시간이 기존에는 70~80ms 걸리는 반면 제안하는 방법을 통해서는 18~20ms로 약 75% 정도 향상된 것을 확인할 수 있었다. 이러한 탐색시간의 감소는 전체적인 검색시간을 기존의 490~540ms에서 438~480ms로 약 10% 정도 향상된 것을 확인하였다.

인기도 기반의 온라인 추천 뉴스 기사와 전문 편집인 기반의 지면 뉴스 기사의 유사성과 중요도 비교 (Comparisons of Popularity- and Expert-Based News Recommendations: Similarities and Importance)

  • 서길수;이성원;서응교;강혜빈;이승원;이은곤
    • Asia pacific journal of information systems
    • /
    • 제24권2호
    • /
    • pp.191-210
    • /
    • 2014
  • As mobile devices that can be connected to the Internet have spread and networking has become possible whenever/wherever, the Internet has become central in the dissemination and consumption of news. Accordingly, the ways news is gathered, disseminated, and consumed have changed greatly. In the traditional news media such as magazines and newspapers, expert editors determined what events were worthy of deploying their staffs or freelancers to cover and what stories from newswires or other sources would be printed. Furthermore, they determined how these stories would be displayed in their publications in terms of page placement, space allocation, type sizes, photographs, and other graphic elements. In turn, readers-news consumers-judged the importance of news not only by its subject and content, but also through subsidiary information such as its location and how it was displayed. Their judgments reflected their acceptance of an assumption that these expert editors had the knowledge and ability not only to serve as gatekeepers in determining what news was valuable and important but also how to rank its value and importance. As such, news assembled, dispensed, and consumed in this manner can be said to be expert-based recommended news. However, in the era of Internet news, the role of expert editors as gatekeepers has been greatly diminished. Many Internet news sites offer a huge volume of news on diverse topics from many media companies, thereby eliminating in many cases the gatekeeper role of expert editors. One result has been to turn news users from passive receptacles into activists who search for news that reflects their interests or tastes. To solve the problem of an overload of information and enhance the efficiency of news users' searches, Internet news sites have introduced numerous recommendation techniques. Recommendations based on popularity constitute one of the most frequently used of these techniques. This popularity-based approach shows a list of those news items that have been read and shared by many people, based on users' behavior such as clicks, evaluations, and sharing. "most-viewed list," "most-replied list," and "real-time issue" found on news sites belong to this system. Given that collective intelligence serves as the premise of these popularity-based recommendations, popularity-based news recommendations would be considered highly important because stories that have been read and shared by many people are presumably more likely to be better than those preferred by only a few people. However, these recommendations may reflect a popularity bias because stories judged likely to be more popular have been placed where they will be most noticeable. As a result, such stories are more likely to be continuously exposed and included in popularity-based recommended news lists. Popular news stories cannot be said to be necessarily those that are most important to readers. Given that many people use popularity-based recommended news and that the popularity-based recommendation approach greatly affects patterns of news use, a review of whether popularity-based news recommendations actually reflect important news can be said to be an indispensable procedure. Therefore, in this study, popularity-based news recommendations of an Internet news portal was compared with top placements of news in printed newspapers, and news users' judgments of which stories were personally and socially important were analyzed. The study was conducted in two stages. In the first stage, content analyses were used to compare the content of the popularity-based news recommendations of an Internet news site with those of the expert-based news recommendations of printed newspapers. Five days of news stories were collected. "most-viewed list" of the Naver portal site were used as the popularity-based recommendations; the expert-based recommendations were represented by the top pieces of news from five major daily newspapers-the Chosun Ilbo, the JoongAng Ilbo, the Dong-A Daily News, the Hankyoreh Shinmun, and the Kyunghyang Shinmun. In the second stage, along with the news stories collected in the first stage, some Internet news stories and some news stories from printed newspapers that the Internet and the newspapers did not have in common were randomly extracted and used in online questionnaire surveys that asked the importance of these selected news stories. According to our analysis, only 10.81% of the popularity-based news recommendations were similar in content with the expert-based news judgments. Therefore, the content of popularity-based news recommendations appears to be quite different from the content of expert-based recommendations. The differences in importance between these two groups of news stories were analyzed, and the results indicated that whereas the two groups did not differ significantly in their recommendations of stories of personal importance, the expert-based recommendations ranked higher in social importance. This study has importance for theory in its examination of popularity-based news recommendations from the two theoretical viewpoints of collective intelligence and popularity bias and by its use of both qualitative (content analysis) and quantitative methods (questionnaires). It also sheds light on the differences in the role of media channels that fulfill an agenda-setting function and Internet news sites that treat news from the viewpoint of markets.

PoC Box 단말의 RTSP 운용을 위한 사용자 요구 중심의 효율적인 다중 수신 버퍼링 기법 및 패킷화 방법에 대한 성능 분석에 관한 연구 (A Study of Performance Analysis on Effective Multiple Buffering and Packetizing Method of Multimedia Data for User-Demand Oriented RTSP Based Transmissions Between the PoC Box and a Terminal)

  • 방지웅;김대원
    • 한국멀티미디어학회논문지
    • /
    • 제14권1호
    • /
    • pp.54-75
    • /
    • 2011
  • PoC(Push-to-talk Over Cellular)는 그룹 음성 및 영상 통화와 인터넷, 멀티미디어 서비스를 통합한 단말 기술이다. PoC는 부재, 긴급 상황, 배터리 방전 등과 같은 다양한 이유로 인해 PoC 세션에 참여하지 못하는 사용자에게 종래 MMS 서비스에서의 MM Box와 비슷한 기능을 가진 PoC Box를 사용하는 기능을 제공하고 있다. PoC 표준안에서는 PoC Box에서 PoC 단말로 미디어 전송 시 RTSP (Real-Time Streaming Protocol)를 사용하도록 권장하고 있다. 기존의 RTSP를 적용한 VOD 서비스의 경우는 빠른 유선 네트워크 망을 고려하여 패킷의 크기를 크게 구현하는 반면 PoC 서비스는 무선 통신 환경이기 때문에 이러한 특성을 고려한 RTSP 전송 방법이 필요하다. 무선 통신 환경에서는 패킷의 손실률이 비교적 유선 통신 환경에서보다 다소 높기 때문에 PoC 단말 측에서 미디어 재생 시 화면 끊김 현상, 영상과 음성의 비동기화 발생, 버퍼링 대기 시간 등이 발생한다. 따라서 PoC 단말 측에서의 이러한 문제점은 사용자가 미디어 콘텐츠를 재생하는데 있어 자신이 원하는 정보를 빠르게 습득하기 어렵게 만든다. 본 논문에서는 RTSP를 이용하여 사용자가 미디어 검색 시 단시간 내에 전송되는 미디어에서 효과적으로 중요한 정보를 습득하고 재생 지연 현상을 줄일 수 있는 "교차 이중 수신 버퍼링 기법", "사전 분할 다중 수신 버퍼링 기법", "On-Demand 다중 수신 버퍼링 기법"과 전송 시 미디어 데이터의 패킷화 방법인 "동일 순위 패킷화 전송 방식", "우선 순위 패킷화 전송 방식"을 제안하였고 실험을 통해 그 성능의 적정성 및 우수성을 검증하였다. 실시된 시뮬레이션 성능 평가에서 사용자의 미디어 검색 성향에 따라 제안된 다중 수신 버퍼링 및 패킷화 방식이 기존 단일 수신 버퍼링 방식과 비교하여 효율성 및 우수성 평가에서 6-9점 이상 우수한 결과를 보였다. 그 중 On-Demand 다중 수신 버퍼링 기법은 동일순위 패킷화 방법과 사용될 때 타 기법과 비교하여 3-24점 사이의 우수성을 보임으로써 사용자의 다양한 미디어 검색 성향에 대해 빠르게 대응할 수 있었다. 또한 단시간 내에 사용자가 집중적으로 미디어 검색이 이루어지는 재생 시간대에 대해 많은 미디어 데이터를 수신 받기 때문에 단말 사용자에게 빠른 정보를 제공할 수 있었다.

EPID (Electronic Portal Imaging Device)의 유용성에 관한 고찰 (Review on Usefulness of EPID (Electronic Portal Imaging Device))

  • 이충원;박도근;최아현;안종호;송기원
    • 대한방사선치료학회지
    • /
    • 제25권1호
    • /
    • pp.57-67
    • /
    • 2013
  • 목 적: 방사선 치료 중 정확한 환자의 셋업 확인과 선량 측정용으로 사용되었던 film을 대신 하여 현재는 전자포탈영상장치(EPID)가 장착된 장비가 증가하고 있다. 이에 본 논문은 전자포탈영상장치 사용 시 자세확인의 정확성과 선량측정의 유용성을 평가해 보고자 한다. 대상 및 방법: 대한방사선치료학회, 대한방사선종양학회, Pubmed에서 "EPID", "Portal dosimetry", "Portal image", "Dose verification", "Quality control", "Cine mode", "Quality - assurance", "In vivo dosimetry"와 같은 용어로 검색하여 획득한 50개의 자료(1997~2012)를 대상으로 EPID의 역사와 선량측정(dosimetry), 자세확인(set-up verification), EPID 특성으로 구분하여 EPID의 유용성을 분석 하였다. 결 과: EPID는 1세대 Liquid-filled ionization chamber, 2세대 Camera based fluroscopic, 3세대 Amorphous-silicon 순으로 발전하였으며, EPID 촬영 모드에는 크게 EPID mode, Cine mode, Integrated mode로 나뉜다. 필름과 EPID의 절대선량정확성 평가를 한 결과 EPID는 1%, EDR2 필름은 3% 이내로 나타나 오차 측정 정확도가 필름에 비해 EPID가 우수하다는 것을 알 수 있었고, 치료계획 시스템으로부터 계산된 기준 조사면과 EDR2 필름, EPID로 측정한 기준 조사면의 선량 분포를 중첩하여 감마 분석한 결과 필름과 EPID 모두 허용기준 3%/3 mm와 2%/2 mm에서 감마값이 1을 초과하는 화소(r%>1)가 전체 화소의 2% 이내였다. 또한 업무 부하 비교에 있어 세기조절방사선 치료에서 전 과정 QA를 수행하는데 소요되는 시간은 EDR2 필름이 약 110분, EPID가 약 55분으로 측정되었다. 결 론: 전자포탈영상장치의 이용은 선량측정과 자세확인에 있어 기존의 복잡하고 번거로웠던 film과 전리조(Ionization chamber)를 대체하기에 충분하였으며, 특히 세기조절방사선치료의 정도관리에 있어 매우 유용하고 효율적이며 정확한 선량 측정 장치임을 알 수 있었다. 또한, 전자포탈영상장치를 이용한 Cine mode 촬영은 횡격막의 움직임에 따라 유동성이 큰 폐와 간의 경우나 자세의 안정성이 불안한 직장암 환자의 경우 추가 선량 없이 실시간으로 종양의 위치를 확인 할 수 있다는 장점이 있어 최적의 방사선 치료 구현이 가능하리라 사료된다.

  • PDF

고품질 스테레오 음악을 위한 오디오 워터마크 정보 삽입/추출 기술 (An Embedding /Extracting Method of Audio Watermark Information for High Quality Stereo Music)

  • 배경율
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.21-35
    • /
    • 2018
  • 본 논문에서는 스테레오 음악에 오디오 워터마크를 삽입하기 위한 알고리즘을 제안하였다. 스테레오 음악은 2개의 채널을 갖고 있기 때문에 기존 워터마킹 기술은 일반적으로 각 채널을 독립적으로 생각하고 처리하는 경우가 많다. 그러나 스테레오를 모노로 변환하는 과정에서 워터마크의 손실이 발생하는 경우가 많이 발생할 수 있다. 제안한 알고리즘은 스테레오를 모노로 변환하더라도 워터마크의 손실이 발생하지 않도록 워터마크를 삽입할 때 스테레오와 모노변환의 특성을 이용하였다. 제안된 알고리즘에 사용된 오디오 워터마크는 "Copyright"와 "Copy_free"라는 두 가지 정보를 터보코드를 이용하여 생성하였다. 두 워터마크는 9바이트(72비트)로 이루어져 있으며, 오류정정을 위하여 터보코드를 적용하면 222비트로 삽입해야 하는 정보량이 늘어난다. 222비트의 워터마크는 추가적인 오류에 강인하도록 1024비트로 확장하여 최종적으로 스테레오 음악에 삽입할 워터마크로 사용하였다. 평균적으로 SNR은 40dB를 넘어서서 전통적인 양자화 방식보다 10dB 이상의 음질 개선을 가져왔다. 이는 상대적으로 10배의 음질 개선도를 의미하는 것으로 매우 유의미한 결과이다. 또한 워터마크의 추출에 필요한 샘플길이는 1초 이내의 길이면 충분히 추출이 가능하고, 128Kbps의 비트레이트를 갖는 MP3 압축에 대해서도 모두 1초 이내 길이의 음악 샘플로부터 워터마크의 완전한 추출이 가능하였다. 전통적인 양자화 방식이 10초 길이의 샘플을 이용해도 대부분 워터마크의 추출에 실패한 것에 비하면 1/10에 불과한 길이로 워터마크의 추출이 가능하다.

적응형 필터와 가변 임계값을 적용하여 잡음에 강인한 심전도 R-피크 검출 (Noise-robust electrocardiogram R-peak detection with adaptive filter and variable threshold)

  • 세이푸르;최철형;김시경;박인덕;김영필
    • 한국산학기술학회논문지
    • /
    • 제18권12호
    • /
    • pp.126-134
    • /
    • 2017
  • 심전도(ECG) 신호에서 R-피크를 추출하는 기법에 대하여 많은 연구가 진행 되어 왔으며, 다양한 방법으로 구현되어 왔다. 그러나 이러한 검출 방법 대부분은 실시간 휴대용 심전도 장치에서 구현하기가 복잡하고 어려운 단점이 있다. R-피크 검출을 위해서는 심전도 데이터에 대하여 베이스라인 드리프트 및 상용전원 잡음 제거 등의 적절한 전처리 및 후가공이 필요하며, 특히 적응형 필터를 활용한 기법에서는 적절한 임계값을 선택하는 것이 중요하다. 적응형 필터의 임계값을 추출하는 방식에서는 고정형(Fixed) 및 적응형(adaptive)으로 구분할 수 있다. 고정 임계 값 추출 방식은 고정된 임계값 보다 낮은 값의 입력이 들어오는 경우에 R-피크 값을 감지하지 못하는 경우가 있으며, 적응 임계값 추출 방식은 때때로 잡음에 의한 잘못된 임계값을 도출하여, 다른 파형(P혹은 T파)의 피크를 감지하는 경우도 나타난다. 본 논문에서는 계산상의 복잡성이 적고, 코드 구현이 단순하면서도 잡음에 강인한 R-피크 검출 알고리즘을 제안한다. 제안된 방식은 앞서 설명한 임계값 추출 문제를 해결하기 위해서, 적응형 필터를 사용해, 심전도 신호에서 베이스 라인 드리프트 제거를 하여 적절한 임계값을 계산하도록 한다. 그리고 필터 처리된 심전도 신호의 최소 값과 최대 값을 사용하여 적절한 임계값이 자동으로 추출 되도록 한다. 그런 다음 심전도 신호로부터 R-피크를 검출하기 위해 임계값 아래에서 'neighborhood searching' 기법이 적용된다. 제안된 방법은 R-피크 검출의 정확도를 향상시키고, 계산 량을 줄여 검출 속도가 보다 빨라지도록 하였다. 다음으로 R-피크 값이 검출 되면, R-R interval 등의 값을 이용해 심박 수를 계산할 수 있도록 한다. 실험결과 심박 수 검출 정확도와 감도가 약 100%로 매우 높았음을 확인할 수 있었다.