Applying Reinforcement Learning in everyday applications and varied environments has proved the potential of the of the field and revealed pitfalls along the way. In robotics, a learning agent takes over gradually the control of a robot by abstracting the navigation model of the robot with its inputs and outputs, thus reducing the human intervention. The challenge for the agent is how to implement a feedback function that facilitates the learning process of an MDP problem in an environment while reducing the time of convergence for the method. In this paper we will implement a reward shaping system avoiding sparse rewards which gives fewer data for the learning agent in a ROS environment. Reward shaping prioritizes behaviours that brings the robot closer to the goal by giving intermediate rewards and helps the algorithm converge quickly. We will use a pseudocode implementation as an illustration of the method.
최근 온라인 유통의 약진 속에서 대표적인 오프라인 유통인 백화점 채널이 예전에 비해 경쟁력이 약화 되었다는 평가를 받고 있다. 이는 유통채널로서의 경쟁력이 약화 된 것이지, 복합 문화 센터의 경쟁력은 나날이 느는 추세다. 길이 복잡한 백화점에서 비대면 방식으로 시설 안내 및 길 찾기 동행, 사용자 나이 및 성별에 따른 매장 추천, 고객 센터 연결 등을 고객에게 제공하는 가이드 로봇을 통하여 경쟁력을 키우고자 해당 서비스를 제안한다.
로보틱스 연구에서, 모바일 로봇의 모션 제어를 위해서는 로봇의 실제 위치를 정확히 추정하는 것이 중요하다. 이를 위해 본 연구에서는, 두 개의 서로 다른 센서 데이터를 칼만필터로 융합하여 로봇의 위치인식을 개선하는 연구를 진행한다. 칼만필터로 융합한 두 개의 센서 측정값은 카메라 영상으로부터 측정된 모바일 로봇의 전역(global) 위치 좌표(x, y)값과 모바일 로봇 바퀴에 부착된 엔코더로부터 측정된 로봇의 직선 및 각속도 값이다. 다음으로 칼만필터로부터 계산된 모바일 로봇의 위치값을 모바일 로봇의 자세 안정화에 피드백하여 모션 제어의 퍼포먼스를 향상시켰다. 최종적으로 논문에서 제안한 센서융합 위치인식 기술과 모션제어기를 실제 로봇에 적용하여 실험적으로 검증하였다. 또한 모션제어에 단일 센서를 피드백으로 사용한 경우와 칼만필터로 융합한 위치 값을 사용한 경우를 비교하므로 칼만필터 기반 센서 융합 기술을 사용한 경우의 퍼포먼스 향상을 확인하였다.
GPS is widely used for positioning applications and attitude of a vehicle can be found also with multiple antennas. However, extremely weak signal level prevents GPS from indoor operation. DR with accelerometers and gyros and landmark based localization method used for indoor applications increase complexity and cost. In this paper, a simple but very efficient ultrasound based attitude determination system which determines both position and attitude in WSN is given. The range between transmitter and receivers are measured using the arrival time difference between ultrasound and RF signal. The 3 dimensional positions can be found using more than 3 range measurements. Furthermore, if more than 2 transmitters are used, the attitude can be determined using the baseline vectors obtained by differencing transmitter and receiver positions. The prototype system is implemented to evaluate the performance of the proposed method. In addition, an error analysis shows the relation between the attitude error and basel me length, quality of measurement and orientation of a vehicle. The static and dynamic experiments performed by micro mobile robot shows accurate position with less than 1.5cm error and attitude with less than 1 degree error can be obtained continuously with 20cm baseline. It is expected that these results can be adapted without modification to indoor applications such as home cleaning robot and autonomous wheelchair maneuvering.
This paper proposes a novel mapping algorithm in Omni-directional Vision SLAM based on an obstacle's feature extraction using Lucas-Kanade Optical Flow motion detection and images obtained through fish-eye lenses mounted on robots. Omni-directional image sensors have distortion problems because they use a fish-eye lens or mirror, but it is possible in real time image processing for mobile robots because it measured all information around the robot at one time. In previous Omni-Directional Vision SLAM research, feature points in corrected fisheye images were used but the proposed algorithm corrected only the feature point of the obstacle. We obtained faster processing than previous systems through this process. The core of the proposed algorithm may be summarized as follows: First, we capture instantaneous $360^{\circ}$ panoramic images around a robot through fish-eye lenses which are mounted in the bottom direction. Second, we remove the feature points of the floor surface using a histogram filter, and label the candidates of the obstacle extracted. Third, we estimate the location of obstacles based on motion vectors using LKOF. Finally, it estimates the robot position using an Extended Kalman Filter based on the obstacle position obtained by LKOF and creates a map. We will confirm the reliability of the mapping algorithm using motion estimation based on fisheye images through the comparison between maps obtained using the proposed algorithm and real maps.
This paper presents a novel collision avoidance technique for mobile robots based on omni-directional vision simultaneous localization and mapping (SLAM). This method estimates the avoidance path and speed of a robot from the location of an obstacle, which can be detected using the Lucas-Kanade Optical Flow in images obtained through fish-eye cameras mounted on the robots. The conventional methods suggest avoidance paths by constructing an arbitrary force field around the obstacle found in the complete map obtained through the SLAM. Robots can also avoid obstacles by using the speed command based on the robot modeling and curved movement path of the robot. The recent research has been improved by optimizing the algorithm for the actual robot. However, research related to a robot using omni-directional vision SLAM to acquire around information at once has been comparatively less studied. The robot with the proposed algorithm avoids obstacles according to the estimated avoidance path based on the map obtained through an omni-directional vision SLAM using a fisheye image, and returns to the original path. In particular, it avoids the obstacles with various speed and direction using acceleration components based on motion information obtained by analyzing around the obstacles. The experimental results confirm the reliability of an avoidance algorithm through comparison between position obtained by the proposed algorithm and the real position collected while avoiding the obstacles.
A GPS sensor is widely used in many areas such as navigation, or air traffic control. Particularly, the car navigation system is equipped with GPS sensor for locational information. However, when a car goes through a tunnel, forest, or built-up area, GPS receiver cannot get the enough number of satellite signals. In these situations, a GPS receiver does not reliably work. A GPS error can be formulated by sum of bias error and sensor noise. The bias error is generated by the geometric arrangement of satellites and sensor noise error is generated by the corrupted signal noise of receiver. To enhance GPS sensor accuracy, these two kinds of errors have to be removed. In this research, we make the road database which includes Road Database File (RDF). RDF includes road information such as road connection, road condition, coordinates of roads, lanes, and stop lines. Among the information, we use the stop line coordinates as a feature point to correct the GPS bias error. If the relative distance and angle of a stop line from a car are detected and the detected stop line can be associated with one of the stop lines in the database, we can measure the bias error and correct the car's location. To remove the other GPS error, sensor noise, the Kalman filter algorithm is used. Additionally, using the RDF, we can get the information of the road where the car belongs. It can be used to help the GPS correction algorithm or to give useful information to users.
This paper proposes a way of expanding the use area of localization technique by using a beacon. In other words, we have developed the auto-calibration algorithm that recognizes the location of this beacon by attaching the beacon on an arbitrary position and by using the information of existing beacon under this situation. By doing so, the moving robot can overcome the limitation that the localization of moving robot is only possible within the area that has installed the existing beacon since the beacon cannot be installed on the accurate location when passing through a danger zone or an unknown zone. Accordingly, the moving robot can slowly move to the unknown zone according to this auto-calibration algorithm and can recognize its own location at a later time in a safe zone. The localization technique is essentially needed in using a moving robot and it is necessary to guarantee certain degree of reliability. Generally, moving robots are designed in a way to work well under the situation that the surroundings is well arranged and the localization techniques of using camera, laser and beacon are well developed. However due to the characteristics of sensor, there may be the cases that the place is dark, interfering radio waves, and/or difficult to install a beacon. The effectiveness of the method proposed in this paper has been proved through an experiment in this paper.
웨어러블 컴퓨팅 환경은 대개 이동 중일 가능성이 많고 이때 눈과 손이 자유롭지 못하고 많은 주의가 필요한데 기존의 데스크탑 인터페이스 방식(WIMP)은 적합하지 않다. 또한 웨어러블 환경에서 모바일 기기의 소형화로 인하여 작은 화면에서 정보를 확인하고 처리해야 하기 때문에 기능 수행에 따른 인지부하가 늘어남과 동시에 수행 속도가 느려지고 많은 오류가 발생하는 등 어려움이 따른다. 이와 같이 변화된 환경에 적합한 입력 방식의 적정 수준을 찾는 연구가 필요하다. 본 연구는 이동 상황에서 모바일 기기를 사용할 때 동시에 여러 가지 일을 수행함으로써 걸릴 수 있는 인지부하를 줄여주기 위한 방법을 기기의 입력 방식과 사용되는 메뉴구조의 복잡성을 중심으로 분석하였다. 입력 방식을 포인팅입력 방식, 버튼입력 방식, 동작입력 방식으로 나누고, 이 방식들을 통한 메뉴탐색 과제와 화면에 제시되는 도형기억 과제를 동시에 수행했을 때 수행의 정확도와 과제수행 속도를 측정하였다. 또한 제시되는 메뉴탐색 과제의 메뉴계층의 수를 변화시켜서 입력 방식의 복잡성에 따른 과제 수행을 살펴보았다. 실험은 정지 상황과 이동 상황에서 모두 이루어졌다. 정지 상황과 이동 상황 모두에서 포인팅입력 방식이 과제 수행의 정확도가 가장 높은 반면 수행 속도에서 가장 느린 것으로 나타났다. 동작입력 방식에서는 수행의 정확도는 떨어졌으나 수행 속도는 빠르게 나타났다. 이는 이동 중에 수행되는 과제에서 정확도보다도 속도가 중요한 상황에서는 동작입력 방식이 적합하다는 것을 시사한다.
전통적인 자동차 또는 전통적인 두 바퀴형 차동 구동 로봇은 기구적인 구조 때문에 이동 동작에 제한이 있을 수밖에 없다. 자동차 산업에서 내연기관 자동차가 전기차로 빠르게 전환되면서 자동차에 로봇 공학 기술의 적용이 활발하게 모색되고 있다. 로봇 공학 분야에서는 이동체의 자세를 변화시키지 않고도 다양한 방향으로 이동할 수 있는 전방향 이동로봇에 대한 연구가 활발히 진행되어 왔으며 주목할 만한 연구 결과들도 많다. 하지만 대부분의 연구에서 이와 같은 전방향 이동을 구현하기 위해서는 메카넘휠 등과 같은 특수한 형태의 바퀴를 사용해야 하는 제한점이 있다. 우리는 전방향 이동을 위한 특수한 바퀴를 사용하지 않고도 전방향성을 구현할 수 있는 두 바퀴를 갖는 모듈형 로봇을 제안하였었다. 본 논문에서는 모듈형 로봇 2대를 전후로 결합하여 네 바퀴를 갖는 전방향 이동로봇을 새로이 제안하였다. 제안된 로봇은 차동 구동 방식의 이동로봇으로 전자브레이크를 사용하여 바퀴부와 로봇 몸체부를 선택적으로 분리, 결합하는 방식을 사용하며 두 개의 절대치형 엔코더와 네 개의 증분형 엔코더를 사용하여 로봇 바퀴부의 위치와 로봇 바퀴의 속도를 제어한다. 제안된 로봇은 일반적인 타이어 바퀴를 채택하고도 전방향 이동이 가능하다. 로봇을 실 제작하여 대각선 궤적과 정사각형 궤적에서의 주행 실험을 통하여 제안된 로봇의 유용성과 안정성을 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.