• Title/Summary/Keyword: Mobile RFID antenna

Search Result 30, Processing Time 0.026 seconds

Design of mobile Radio Frequency Identification (m-RFID) antenna (Mobile RFID (Radio Frequency Identification) 용 안테나 계)

  • Kim, Yong-Jin;Jung, Chang-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3608-3613
    • /
    • 2009
  • In this paper, we propose a mobile Radio Frequency Identification antenna for mobile hand set. The proposed antenna with directive radiation characteristics based on combination of electric-magnetic radiators can be installed in the mobile hand-set. The combination of PIFA antenna for electric radiator and loop antenna for magnetic radiator is presented and designed for료 m-RFID reader system. Target frequency band is 900-MHz band. and desired gain is 4dBi. The antenna is simulated using Ansoft HFSS software and shows expected results. The antenna is also manufactured using FR4-epoxy circuit board (h=1 mm, $\varepsilon_{\tau}=4.4$). There are good agreements between the simulated and measured VSWR curves and radiation characteristics.

Triple-band Compact Chip Antenna using Coupled Meanderline Structure for Mobile RFID/PCS/WiBro (결합 미엔더 선로을 이용한 모바일 RFID/PCS/WiBro 삼중 대역 소형 칩 안테나)

  • Lim, Hyung-Jun;Lee, Hong-Min
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.225-230
    • /
    • 2005
  • The proposed Triple-band Compact Chip Antenna using Coupled Meander line and stacked meander Structure for Mobile RFID/PCS/WiBro. The proposed antenna is designed to operate at 900, 1800, and 2350 MHz, and is realized by parasitic coupled and stacked a meander line. Meander lines are using extend length of effective current path more than monopole and contribute miniaturization. The coupled meander line controls the excitations of the Mobile RFID and PCS, stacked meander line controls the excitation of the WiBro. The proposed antenna size is $11mm\times22.5mm\times1mm$. The antenna supports 900MHz, 1800MHz and 2350MHz operations simultaneously with bandwidths of 33MHz, 230MHz and 100MHz, respectively. The proposed antenna gains are result of simulation to be -0.8dBi, 3dBi and 3.8dBi, respectively.

  • PDF

Triple-band Compact Chip Antenna Using Coupled Meander-line Structure for Mobile RFID/PCS/WiBro (결합 미엔더 선로를 이용한 모바일 RFID/PCS/WiBro 삼중 대역 소형 칩 안테나)

  • Lim Hyoung-Jun;Lee Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.178-183
    • /
    • 2006
  • The proposed triple-band compact chip antenna using coupled meander line and stacked meander structure for mobile RFID/PCS/WiBro. The proposed antenna is designed to operate at 900, 1,800, and 2,350 MHz, and is realized by parasitic coupled and stacked a meander line. Meander lines are using extend length of effective current path more than monopole and contribute miniaturization. The coupled meander line controls the excitations of the mobile RFID and PCS, stacked meander line controls the excitation of the WiBro. The fabricated antenna size is $10.98{\times}22.3{\times}0.98\;mm$. The resonance frequencies are 905 MHz, 1.77 GHz and 2.32 GHz. The impedance bandwidths are 24 MHz, 140 MHz and 92 MHz. The maximum gains of antenna are 0.34 dBi, 2.58 dBi and 0.4 dBi at resonance frequencies.

Design of Two-Inductor Loaded Small Loop Antennas Using Genetic Algorithm (유전 알고리즘을 이용한 인덕터 장하 소형 루프 안테나 설계)

  • Cho, Gyu-Yeong;Kim, Jae-Hee;Park, Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1021-1030
    • /
    • 2009
  • We propose optimization method of two-inductor loaded small loop antennas using simple genetic algorithm. To optimize the loop antennas for the RFID and the mobile phone band, we changed positions and values of the two inductors in the loop antenna. Visual basic was used to make genetic algorithm and to calculate fitness values by controlling the commercial EM software. The bandwidth of the optimized RFID loop antenna is 10 MHz at the center frequency of 922 MHz and that of the mobile phone antenna are 84 MHz and 266 MHz at the center frequency of 948 MHz(GSM band) and 1.81 GHz(DCS band), respectively.

Compact mobile antenna and near field characterization for Communication Broadcasting Convergence (통방융합용 소형 모바일 안테나 및 근거리장 특성)

  • Kang, Jeong-Jin;Rothwell, Edward J.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.5
    • /
    • pp.43-49
    • /
    • 2008
  • Motivated by the Communication Broadcasting Convergence service, various technical approaches are being used to develop more efficient antenna models. This paper proposes a compact mobile antenna which is attachable to a cell phone and is applicable for Communication Broadcasting Convergence. In the design of the antennas for mobile handsets, size reduction is a crucial factor. In this paper, the compactness of a loop antenna is realized by bending a folded-dipole. A short planar dipole is transformed to a twice folded dipole and a loop antenna to produce a larger input resistance. The current distribution of the antenna is the same as a loop antenna, and its radiation patterns are omni-directional. We also analyze the performance of the RFID antenna by exploring the current-induced near field radiation patterns using a electro-optic field mapping system.

  • PDF

The Characteristics Analysis of Low Profile Meander 2-Layer Monopole Antenna (소형 미앤더 2-층 모노폴 안테나의 특성분석)

  • Jang, Yong-Woong;Lee, Sang-Woo;Shin, Ho-Sub
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.934-941
    • /
    • 2014
  • In this paper, we present a low profile 2-layered meander built-in monopole antenna for portable RFID reader using FDTD(Finite Difference Time Domain) method. The input impedance, return loss, and VSWR in the frequency domain are calculated by Fourier transforming the time domain results. The double meander 2-layer structure is used to enhance the impedance matching and increase the antenna gain. The measured bandwidth of the antenna is 0.895 GHz ~ 0.930 GHz for a S11 of less than -10dB. The measured peak gain of proposed low profile RFID built-in antenna is 2.3 dBi. And the proposed built-in antenna for portable RFID reader can offers relatively wide-bandwidth and high-gain characteristics, in respectively. Experimental data for the return loss and the gain of the antenna are also presented, and they are relatively in good agreement with the FDTD results. This antenna can be also applied to mobile communication field, energy fields, RFID, and home-network operations, broadcasting, and other low profile mobile systems.

A Study on the 134.2kHz Band RFID(Radio Frequency Identification) Loop Antenna Design (134.2kHz 대역의 RFID 루프안테나 설계에 관한 연구)

  • 강민수;이동선;이기서
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.3
    • /
    • pp.102-109
    • /
    • 2001
  • In this paper, it has a proposal of the RFID reader antenna design that expand the dedicated short-range communication distance between a static object on the ground and a mobile object attached on the moving article. The static reader equipped with micro-processor makes it possible to have a serial communication with a main system, so that much data can be transfer to the main system. An antenna is adjusted in order to a communication, the scale is designed by results values of simulation using matlab. It is achieved to systematically manage logistics, person resource and security system by grasping the information and location of mobile object on the basis that this system receives the information between a static reader and a mobile object tag at 134.2kHz band on real time, also to make it possible the main system to process. Therefore, the reader antenna scale is controlled on the foundation of a magnetic field theory in order to expand a recognition distance of reader and tag, so that can be optimistically recognized with minimizing the direction influence of reader and tag.

  • PDF

A Study on Map Building of Mobile Robot Using RFID Technology and Ultrasonic Sensor (초음파센서와 RFID 시스템을 이용한 이동로봇의 맵 빌딩에 관한 연구)

  • Lee, Do-Kyoung;Im, Jae-Sung;Kim, Sang-Bong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.239-244
    • /
    • 2010
  • This paper is to present map building of mobile robot using RFID (Radio Frequency Identification) technology and ultrasonic sensor. For mobile robot to perform map building, the mobile robot needs its localization and accurate driving in space. In this reason, firstly, kinematic modeling of mobile robot under non-holonomic constrains is introduced. Secondly, based on this modeling, a tracking controller is designed for tracking a given path based on backstepping method using Lyapunov function. The Lyapunov function is also introduced for proving the stability of the designed tracking controller. Thirdly, 2D map building is performed by RFID system, mobile robot system and ultrasonic sensors. The RFID mobile robot system is composed of DC motor, encoder, ultra sonic sensor, digital compass, RFID receiver and RFID antenna. Finally, the path tracking simulation results and map building experimental results are presented to show the effectiveness of the designed controller.

Design of a broadband CP antenna for RFID readers (RFID 리더용 광대역 원편파 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho;Park, Jin-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1759-1764
    • /
    • 2015
  • In this paper, we considered a design method of a circular polarization (CP) antenna for UHF (ultra high frequency) RFID (Radio Frequency IDentification) readers. The antenna is a dual-fed circular microstrip patch which produces right-handed CP. Quadrature hybrid coupler is used for dual feeding. The outputs of the coupler and circular patch are connected through copper wires, and the inductive reactance produced by the connecting wires is compensated by a ring-shaped slot inserted inside the circular patch. The effects of the geometrical parameters of the proposed antenna on the antenna performance are examined, and the parameters are adjusted to be suitable for the operation in North American UHF RFID band (902-928 MHz), which includes domestic UHF RFID band. The antenna is fabricated, and the experiment results reveal a frequency band of 854-993 MHz for a voltage standing wave ratio < 2. The fabricated antenna is connected to a commercial RFID reader, and it showed a good performance of tag identification.

Design of a Tag Antenna for UHF RFID Food Systems

  • Shin, Dong-Beom;Lee, Jung Nam;Lee, Heyung-Sub;Lee, Sang-Yeoun;Kim, Byeong-Sam
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.208-213
    • /
    • 2013
  • This paper proposes a tag antenna for radio frequency identification (RFID) food system. The RFID tag antenna is designed and fabricated based on the rectangular loop concept used in the UHF band (Korean and Japanese standards, 916.7-923.5MHz). The proposed tag antenna is composed of a radiation patch, sensor tag chip, temperature sensor, oscillator, and battery. We conjugated matching between the tag antenna and the sensor tag using a U-shaped stub. Details of the proposed tag antenna design and the simulated and measured results are presented and discussed.