• Title/Summary/Keyword: Mobile Phone Sensor

Search Result 154, Processing Time 0.018 seconds

Geographical Name Denoising by Machine Learning of Event Detection Based on Twitter (트위터 기반 이벤트 탐지에서의 기계학습을 통한 지명 노이즈제거)

  • Woo, Seungmin;Hwang, Byung-Yeon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.10
    • /
    • pp.447-454
    • /
    • 2015
  • This paper proposes geographical name denoising by machine learning of event detection based on twitter. Recently, the increasing number of smart phone users are leading the growing user of SNS. Especially, the functions of short message (less than 140 words) and follow service make twitter has the power of conveying and diffusing the information more quickly. These characteristics and mobile optimised feature make twitter has fast information conveying speed, which can play a role of conveying disasters or events. Related research used the individuals of twitter user as the sensor of event detection to detect events that occur in reality. This research employed geographical name as the keyword by using the characteristic that an event occurs in a specific place. However, it ignored the denoising of relationship between geographical name and homograph, it became an important factor to lower the accuracy of event detection. In this paper, we used removing and forecasting, these two method to applied denoising technique. First after processing the filtering step by using noise related database building, we have determined the existence of geographical name by using the Naive Bayesian classification. Finally by using the experimental data, we earned the probability value of machine learning. On the basis of forecast technique which is proposed in this paper, the reliability of the need for denoising technique has turned out to be 89.6%.

Evaluation of Population Exposures to PM2.5 before and after the Outbreak of COVID-19 (서울시 구로구에서 COVID-19 발생 전·후 초미세먼지(PM2.5) 농도 변화에 따른 인구집단 노출평가)

  • Kim, Dongjun;Min, Gihong;Choe, Yongtae;Shin, Junshup;Woo, Jaemin;Kim, Dongjun;Shin, Junghyun;Jo, Mansu;Sung, Kyeonghwa;Choi, Yoon-hyeong;Lee, Chaekwan;Choi, Kilyoong;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.6
    • /
    • pp.521-529
    • /
    • 2021
  • Background: The coronavirus disease (COVID-19) has caused changes in human activity, and these changes may possibly increase or decrease exposure to fine dust (PM2.5). Therefore, it is necessary to evaluate the exposure to PM2.5 in relation to the outbreak of COVID-19. Objectives: The purpose of this study was to compare and evaluate the exposure to PM2.5 concentrations by the variation of dynamic populations before and after the outbreak of COVID-19. Methods: This study evaluated exposure to PM2.5 concentrations by changes in the dynamic population distribution in Guro-gu, Seoul, before and after the outbreak of COVID-19 between Jan and Feb, 2020. Gurogu was divided into 2,204 scale standard grids of 100 m×100 m. Hourly PM2.5 concentrations were modeled by the inverse distance weight method using 24 sensor-based air monitoring instruments. Hourly dynamic population distribution was evaluated according to gender and age using mobile phone network data and time-activity patterns. Results: Compared to before, the population exposure to PM2.5 decreased after the outbreak of COVID-19. The concentration of PM2.5 after the outbreak of COVID-19 decreased by about 41% on average. The variation of dynamic population before and after the outbreak of COVID-19 decreased by about 18% on average. Conclusions: Comparing before and after the outbreak of COVID-19, the population exposures to PM2.5 decreased by about 40%. This can be explained to suggest that changes in people's activity patterns due to the outbreak of COVID-19 resulted in a decrease in exposure to PM2.5.

A Study on Intuitive IoT Interface System using 3D Depth Camera (3D 깊이 카메라를 활용한 직관적인 사물인터넷 인터페이스 시스템에 관한 연구)

  • Park, Jongsub;Hong, June Seok;Kim, Wooju
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.2
    • /
    • pp.137-152
    • /
    • 2017
  • The decline in the price of IT devices and the development of the Internet have created a new field called Internet of Things (IoT). IoT, which creates new services by connecting all the objects that are in everyday life to the Internet, is pioneering new forms of business that have not been seen before in combination with Big Data. The prospect of IoT can be said to be unlimited in its utilization. In addition, studies of standardization organizations for smooth connection of these IoT devices are also active. However, there is a part of this study that we overlook. In order to control IoT equipment or acquire information, it is necessary to separately develop interworking issues (IP address, Wi-Fi, Bluetooth, NFC, etc.) and related application software or apps. In order to solve these problems, existing research methods have been conducted on augmented reality using GPS or markers. However, there is a disadvantage in that a separate marker is required and the marker is recognized only in the vicinity. In addition, in the case of a study using a GPS address using a 2D-based camera, it was difficult to implement an active interface because the distance to the target device could not be recognized. In this study, we use 3D Depth recognition camera to be installed on smartphone and calculate the space coordinates automatically by linking the distance measurement and the sensor information of the mobile phone without a separate marker. Coordination inquiry finds equipment of IoT and enables information acquisition and control of corresponding IoT equipment. Therefore, from the user's point of view, it is possible to reduce the burden on the problem of interworking of the IoT equipment and the installation of the app. Furthermore, if this technology is used in the field of public services and smart glasses, it will reduce duplication of investment in software development and increase in public services.

Fabrication of Portable Self-Powered Wireless Data Transmitting and Receiving System for User Environment Monitoring (사용자 환경 모니터링을 위한 소형 자가발전 무선 데이터 송수신 시스템 개발)

  • Jang, Sunmin;Cho, Sumin;Joung, Yoonsu;Kim, Jaehyoung;Kim, Hyeonsu;Jang, Dayeon;Ra, Yoonsang;Lee, Donghan;La, Moonwoo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.249-254
    • /
    • 2022
  • With the rapid advance of the semiconductor and Information and communication technologies, remote environment monitoring technology, which can detect and analyze surrounding environmental conditions with various types of sensors and wireless communication technologies, is also drawing attention. However, since the conventional remote environmental monitoring systems require external power supplies, it causes time and space limitations on comfortable usage. In this study, we proposed the concept of the self-powered remote environmental monitoring system by supplying the power with the levitation-electromagnetic generator (L-EMG), which is rationally designed to effectively harvest biomechanical energy in consideration of the mechanical characteristics of biomechanical energy. In this regard, the proposed L-EMG is designed to effectively respond to the external vibration with the movable center magnet considering the mechanical characteristics of the biomechanical energy, such as relatively low-frequency and high amplitude of vibration. Hence the L-EMG based on the fragile force equilibrium can generate high-quality electrical energy to supply power. Additionally, the environmental detective sensor and wireless transmission module are composed of the micro control unit (MCU) to minimize the required power for electronic device operation by applying the sleep mode, resulting in the extension of operation time. Finally, in order to maximize user convenience, a mobile phone application was built to enable easy monitoring of the surrounding environment. Thus, the proposed concept not only verifies the possibility of establishing the self-powered remote environmental monitoring system using biomechanical energy but further suggests a design guideline.