• Title/Summary/Keyword: Mobile IP-based networks

Search Result 245, Processing Time 0.032 seconds

Multicast Routing Protocol for Guaranting Host Mobility (호스트 이동성 보장을 위한 멀티캐스트 라우팅 프로토콜)

  • 양승제;박성한
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.133-136
    • /
    • 2003
  • In this paper, we propose a multicast routing protocol for the seamless delivery of multicast data to mobile hosts through the optimal route in IP based mobile networks. The proposed multicast routing protocol is a hybrid method employing the merits of the bi-directional tunneling and the remote subscription by considering the mobility of mobile hosts. The proposed protocol satisfies the bound of end-to-end delay and supports the seamless handoff. The simulation results show that the proposed protocol has better performance in the number of multicast tree reconstruction and tunneling length and packet loss time than the previous protocols.

  • PDF

Boundary Zone Overlapping Scheme for Fast Handoff Based on Session Key Reuse (AAA MIP 환경에서 공유영역 기반 세션키 재사용을 통한 고속 핸드오프 방식 연구)

  • Choi, Yu-Mi;Chung, Min-Young;Choo, Hyun-Seung
    • The KIPS Transactions:PartC
    • /
    • v.12C no.4 s.100
    • /
    • pp.481-488
    • /
    • 2005
  • The Mobile W provides an efficient and scalable mechanism for host mobility within the Internet. However, the mobility implies higher security risks than static operations in fixed networks. In this paper, the Mobile IP has been adapted to allow AAA protocol that supports authentication, authorization, and accounting(AAA) for security and collection for accounting information of network usage by mobile nodes(MNs). For this goal, we Propose the boundary tone overlapped network structure while solidifying the security for the authentication of an MN. That is, the Proposed scheme delivers the session keys at the wired link for MN's security instead of the wireless one, so that it provides a fast and seamless handoff mechanism. According to the analysis of modeling result, the proposed mechanism compared to the existing session key reuse method is up to about $40\%$ better in terms of normalized surcharge for the handoff failure rate that considers handoff total time.

Name-Based Autoconfiguration for Mobile Ad hoc Networks

  • Kim, Nam-Hoon;Kang, Sae-Hoon;Lee, Young-Hee;Lee, Ben
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.243-246
    • /
    • 2006
  • In a mobile ad hoc network, difficulties exist in supporting address autoconfiguration and naming resolution due to the lack of centralized servers. This letter presents a novel approach, called name-based autoconfiguration (NBA), which uses host names to determine IP addresses and provides address autoconfiguration and name resolution as a single protocol.

  • PDF

A Comparative Study of IP Mobility Protocols : Fast Handover vs. Mobile IPv6 (IP 이동성 지원 프로토콜에 대한 비교 연구: Fast Handover 대 Mobile IPv6)

  • 백상헌;최양희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.651-659
    • /
    • 2004
  • The Fast Handover protocol [1] provides seameless handover in wireless If networks by minimizing handover latency, which uses anticipation based on layer 2 (L2) trigger information. Therefore, it incurs higher signaling costs compared with the basic Mobile U protocol. Furthermore, since the L2 trigger is based on fluctuating wireless channel states, the handover anticipation may sometimes be incorrect. In the case of incorrect anticipation, unnecessary buffer space may be used for the purpose of providing a smooth handover. Therefore, it is essentical to analyze these overhead costs, in order to evaluate and compare the performance of Fast Handover with that of the basic Mobile U protocol. In this paper, we analyzed the overhead associated with Fast Handover including the signaling cost and the packet delivery cost. We formulated these costs based on a timing diagram and compared Fast Handover with basic Mobile Ipv6 in terms of their packet loss rates and buffer requirements. Also, we studied the impact of the L2 triggering time on the total overhead cost.

End-to-End Performance of VoIP based on Mobility Pattern over MANETs

  • Kim, Young-Dong
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.309-313
    • /
    • 2009
  • In this paper, end-to-end VoIP(Voice over Internet Protocol) performance is evaluated by simulation with NS-2 simulation tool. There are many results studied and published for VoIP performance over TCP/IP networks. But, almost all of them were focused on wired or wireless Internet environments. About MANET (Mobile Ad Hoc Network), VoIP is currently studying several points of research. In this paper, analysis of VoIP performance is done with focusing on the mobility of MANETs. MOS(Mean Opinion Score), network delay, packet loss rates are considered as end-to-end QoS performance parameters.

Gateway Strategies for VoIP Traffic over Wireless Multihop Networks

  • Kim, Kyung-Tae;Niculescu, Dragos;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.24-51
    • /
    • 2011
  • When supporting both voice and TCP in a wireless multihop network, there are two conflicting goals: to protect the VoIP traffic, and to completely utilize the remaining capacity for TCP. We investigate the interaction between these two popular categories of traffic and find that conventional solution approaches, such as enhanced TCP variants, priority queues, bandwidth limitation, and traffic shaping do not always achieve the goals. TCP and VoIP traffic do not easily coexist because of TCP aggressiveness and data burstiness, and the (self-) interference nature of multihop traffic. We found that enhanced TCP variants fail to coexist with VoIP in the wireless multihop scenarios. Surprisingly, even priority schemes, including those built into the MAC such as RTS/CTS or 802.11e generally cannot protect voice, as they do not account for the interference outside communication range. We present VAGP (Voice Adaptive Gateway Pacer) - an adaptive bandwidth control algorithm at the access gateway that dynamically paces wired-to-wireless TCP data flows based on VoIP traffic status. VAGP continuously monitors the quality of VoIP flows at the gateway and controls the bandwidth used by TCP flows before entering the wireless multihop. To also maintain utilization and TCP performance, VAGP employs TCP specific mechanisms that suppress certain retransmissions across the wireless multihop. Compared to previous proposals for improving TCP over wireless multihop, we show that VAGP retains the end-to-end semantics of TCP, does not require modifications of endpoints, and works in a variety of conditions: different TCP variants, multiple flows, and internet delays, different patterns of interference, different multihop topologies, and different traffic patterns.

A Dynamic Priority-based QoS Control Scheme for Wireless Mobile Networks

  • Kang, Moon-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.57-60
    • /
    • 2005
  • In this paper, a dynamic priority-based QoS (DPQoS) provision scheme is proposed for the required QoS from one end of the network to the other in wireless mobile networks. The DPQoS model is used to meet diversity multimedia traffic requirements. This model is come up with a framework for the wireless network of which consists of a core-IP network and also a number of wireless access networks. For the true end-to-end QoS, it is required that the core network is able to support the required QoS for the wireless users. This paper shows a solution to optimize the performance for different traffic classes according to the traffic characteristics. The performance of the proposed scheme is evaluated at delay aspects such as delay and throughput.

  • PDF

Experimental Performance Evaluation of Vertical Handover with Virtual Interface in Heterogeneous Mobile Networks (이종 무선네트워크에서 가상인터페이스기반 수직적 핸드오버 실증 성능 평가)

  • Cho, Il-Kwon;Yun, Dong-Geun;Ha, Sang-Yong;Choi, Seong-Gon
    • The KIPS Transactions:PartC
    • /
    • v.19C no.2
    • /
    • pp.127-134
    • /
    • 2012
  • In this paper, we propose a mobility management scheme which has a simple IP emulation method based on virtual interface. This scheme supports prevention of service abortion resulting from RAT (Radio Access Technology) interface switching during vertical handover and provides mobility management convenience according to maintenance of consistency in simple IP mobility management scheme of 3rd generation mobile network. Through the empirical experiments of proposed method, we check out the improvement of handover performance of the proposed scheme based on vertical handover latency comparing with a non-virtual interface system.

A Robust Mobile Video Streaming in Heterogeneous Emerging Wireless Systems

  • Oh, Hayoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2118-2135
    • /
    • 2012
  • With the rapid development of heterogeneous emerging wireless technologies and numerous types of mobile devices, the need to support robust mobile video streaming based on the seamless handover in Future Internet is growing. To support the seamless handover, several IP-based mobility management protocols such as Mobile IPv6 (MIPv6), fast handover for the MIPv6 (FMIPv6), Hierarchical MIPv6 (HMIPv6) and Proxy Mobile IPv6 (PMIPv6) were developed. However, MIPv6 depreciates the Quality-of-Service (QoS) and FMIPv6 is not robust for the video services in heterogeneous emerging wireless networks when the Mobile Node (MN) may move to another visited network in contrast with its anticipation. In Future Internet, the possibility of mobile video service failure is more increased because mobile users consisting of multiple wireless network interfaces (WNICs) can frequently change the access networks according to their mobility in heterogeneous wireless access networks such as 3Generation (3G), Wireless Fidelity (Wi-Fi), Worldwide Interoperability for Microwave Access (WiMax) and Bluetooth co-existed. And in this environment, seamless mobility is coupled according to user preferences, enabling mobile users to be "Always Best Connected" (ABC) so that Quality of Experience is optimised and maintained. Even though HMIPv6 and PMIPv6 are proposed for the location management, handover latency enhancement, they still have limit of local mobility region. In this paper, we propose a robust mobile video streaming in Heterogeneous Emerging Wireless Systems. In the proposed scheme, the MN selects the best-according to an appropriate metric-wireless technology for a robust video streaming service among all wireless technologies by reducing the handover latency and initiation time when handover may fail. Through performance evaluation, we show that our scheme provides more robust mechanism than other schemes.

Design and Verification of Flow Mobility Scheme tn the AIMS System (AIMS 시스템에서 플로우 이동성 기법의 설계와 검증)

  • Lee, Sung-Kuen;Lee, Kyoung-Hee;Min, Sung-Gi;Lee, Hyo-Beom;Lee, Hyun-Woo;Han, Youn-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7B
    • /
    • pp.760-770
    • /
    • 2011
  • The existing mobility management schemes do not fully support the next generation network, which is composed of IP-based core network and various access networks. Currently, ETRI has been developing the AIMS (Access Independent Mobility Service) system which satisfies the ITU-T requirements of mobility management in the next generation network. The AIMS system is designed to provide a mobile host with a fast and reliable mobility service among heterogeneous access networks. Recently, many user devices have multiple communication interfaces, e.g., 3G and WLAN, and thus they can make two or more network connections at the same time. In this paper, we design a scheme of flow mobility, i.e., the movement of selected data flows from one access technology to another, to be applied in the AIMS system, and verify the proposed scheme through the NS-3 simulation study. From the simulation results, we can know that the proposed flow mobility scheme can utilize the network resource efficiently in the heterogeneous mobile networks.