• 제목/요약/키워드: Mobile Edge Cloud

검색결과 44건 처리시간 0.02초

EdgeCloudSim을 이용한 가상 이동 엣지 컴퓨팅 테스트베드 환경 개발 (Construction of a Virtual Mobile Edge Computing Testbed Environment Using the EdgeCloudSim)

  • 임헌국
    • 한국정보통신학회논문지
    • /
    • 제24권8호
    • /
    • pp.1102-1108
    • /
    • 2020
  • 이동 엣지 컴퓨팅은 중앙 집중식 데이터 처리가 아닌 데이터가 생성되는 네트워크의 에지와 가까운 곳에서 데이터를 처리하는 방식으로 클라우드 컴퓨팅의 단점을 보완하여 새로운 전기를 마련할 수 있는 기술이다. 데이터를 처리하고 연산하는 곳을 따로 먼 데이터 센터에 두는 것이 아닌, 이동 단말 장치들과 가까운 엣지에 컴퓨팅 능력을 부가하고 데이터 분석까지 가능하게 하여 저지연/초고속 컴퓨팅 서비스의 실현이 가능하게 하였다. 본 논문에서는 EdgeCloudSim 시뮬레이터를 이용해 클라우드와 엣지 노드가 협업하여 이동 단말의 컴퓨팅 작업 처리를 분업화 하는 가상의 이동 엣지 컴퓨팅 테스트베드 환경을 개발한다. 개발된 가상 이동 엣지 컴퓨팅 테스트베드 환경은 중앙 클라우드와 엣지 컴퓨팅 노드들 사이에서 이동 단말들의 컴퓨팅 작업 분배를 위한 오프로딩 기법들의 성능을 평가하고 분석한다. 가상 이동 엣지 컴퓨팅 테스트베드 환경 및 오프로딩 성능 평가를 제시함으로써 클라우드와 협업하는 이동 엣지 컴퓨팅 노드 구축을 준비하는 산업계 엔지니어들에게 하나의 사전 지식을 제공하고자 한다.

Task Scheduling on Cloudlet in Mobile Cloud Computing with Load Balancing

  • Poonam;Suman Sangwan
    • International Journal of Computer Science & Network Security
    • /
    • 제23권10호
    • /
    • pp.73-80
    • /
    • 2023
  • The recent growth in the use of mobile devices has contributed to increased computing and storage requirements. Cloud computing has been used over the past decade to cater to computational and storage needs over the internet. However, the use of various mobile applications like Augmented Reality (AR), M2M Communications, V2X Communications, and the Internet of Things (IoT) led to the emergence of mobile cloud computing (MCC). All data from mobile devices is offloaded and computed on the cloud, removing all limitations incorporated with mobile devices. However, delays induced by the location of data centers led to the birth of edge computing technologies. In this paper, we discuss one of the edge computing technologies, i.e., cloudlet. Cloudlet brings the cloud close to the end-user leading to reduced delay and response time. An algorithm is proposed for scheduling tasks on cloudlet by considering VM's load. Simulation results indicate that the proposed algorithm provides 12% and 29% improvement over EMACS and QRR while balancing the load.

모바일 엣지 클라우드 환경에서 인공지능 기반 모니터링 기법 (A Monitoring Scheme Based on Artificial Intelligence in Mobile Edge Cloud Computing Environments)

  • 임종범;최희석;유헌창
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제7권2호
    • /
    • pp.27-32
    • /
    • 2018
  • 모바일 엣지 클라우드 환경에서 중요하게 다루어야 할 사항 중 하나는 모바일 장치에 대한 모니터링이다. 모바일 장치는 장치의 특성상 불안정한 상태가 발생하여 결함이 발생할 수 있기 때문에 모바일 엣지 클라우드의 SLA (Service Level Agreement)를 만족시키기 위해서는 모바일 장치의 모니터링 기법을 통해 결함을 측정하여 이에 대한 조치를 수행하여야 한다. 이 논문에서는 모바일 엣지 클라우드 환경에서 인공지능 기반 모바일 장치 모니터링 기법을 제안한다. 제안하는 모니터링 기법은 모바일 장치에 대한 이전 모니터링 정보와 현재 모니터링 정보를 기반으로 모바일 장치의 결함 발생을 측정할 수 있도록 설계 되었다. 이를 위해 인공지능 기법 중 하나인 은닉 마르코프 체인 모델을 모바일 장치에 대한 모니터링 기법에 적용하였다. 실험 평가를 통해 제안하는 모니터링 기법에 대한 검증을 수행하였다. 제안하는 기법은 모바일 장치뿐만 아니라 일반적인 클라우드 환경에서의 가상 머신을 모니터링 하는 방법으로도 활용할 수 있도록 설계되었다.

A Study of Mobile Edge Computing System Architecture for Connected Car Media Services on Highway

  • Lee, Sangyub;Lee, Jaekyu;Cho, Hyeonjoong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권12호
    • /
    • pp.5669-5684
    • /
    • 2018
  • The new mobile edge network architecture has been required for an increasing amount of traffic, quality requirements, advanced driver assistance system for autonomous driving and new cloud computing demands on highway. This article proposes a hierarchical cloud computing architecture to enhance performance by using adaptive data load distribution for buses that play the role of edge computing server. A vehicular dynamic cloud is based on wireless architecture including Wireless Local Area Network and Long Term Evolution Advanced communication is used for data transmission between moving buses and cars. The main advantages of the proposed architecture include both a reduction of data loading for top layer cloud server and effective data distribution on traffic jam highway where moving vehicles require video on demand (VOD) services from server. Through the description of real environment based on NS-2 network simulation, we conducted experiments to validate the proposed new architecture. Moreover, we show the feasibility and effectiveness for the connected car media service on highway.

The Design of Dynamic Fog Cloud System using mDBaaS

  • Hwang, Chigon;Shin, Hyoyoung;Lee, Jong-Yong;Jung, Kyedong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제9권4호
    • /
    • pp.59-66
    • /
    • 2017
  • Cloud computing has evolved into a core computing infrastructure for the internet that encompasses content, as well as communications, applications and commerce. By providing powerful computing and communications capabilities in the palm of the hand everywhere with a variety of smart devices, mobile applications such as virtual reality, sensing and navigation have emerged and radically changed the patterns people live. The data that is generated is getting bigger. Cloud computing, on the other hand, has problems with system load and speed due to the collection, processing and control of remote data. To solve this problem, fog computing has been proposed in which data is collected and processed at an edge. In this paper, we propose a system that dynamically selects a fog server that acts as a cloud in the edge. It serves as a mediator in the cloud, and provides information on the services and systems belonging to the cloud to the mobile device so that the mobile device can act as a fog. When the role of the fog system is complete, we provide it to the cloud to virtualize the fog. The heterogeneous problem of data of mobile nodes can be solved by using mDBaaS (Mobile DataBase as a Service) and we propose a system design method for this.

5G MEC 기반 로봇 엔진 원격 구동을 위한 클라우드 로보틱스 시스템 구성 및 실증 (Validation of Cloud Robotics System in 5G MEC for Remote Execution of Robot Engines)

  • 구세완;강성규;정원홍;문형일;양현석;김영재
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.118-123
    • /
    • 2022
  • We implemented a real-time cloud robotics application by offloading robot navigation engine over to 5G Mobile Edge Computing (MEC) sever. We also ran a fleet management system (FMS) in the server and controlled the movements of multiple robots at the same time. The mobile robots under the test were connected to the server through 5G SA network. Public 5G network, which is already commercialized, has been temporarily modified to support this validation by the network operator. Robot engines are containerized based on micro-service architecture and have been deployed using Kubernetes - a container orchestration tool. We successfully demonstrated that mobile robots are able to avoid obstacles in real-time when the engines are remotely running in 5G MEC server. Test results are compared with 5G Public Cloud and 4G (LTE) Public Cloud as well.

An Overview of Mobile Edge Computing: Architecture, Technology and Direction

  • Rasheed, Arslan;Chong, Peter Han Joo;Ho, Ivan Wang-Hei;Li, Xue Jun;Liu, William
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권10호
    • /
    • pp.4849-4864
    • /
    • 2019
  • Modern applications such as augmented reality, connected vehicles, video streaming and gaming have stringent requirements on latency, bandwidth and computation resources. The explosion in data generation by mobile devices has further exacerbated the situation. Mobile Edge Computing (MEC) is a recent addition to the edge computing paradigm that amalgamates the cloud computing capabilities with cellular communications. The concept of MEC is to relocate the cloud capabilities to the edge of the network for yielding ultra-low latency, high computation, high bandwidth, low burden on the core network, enhanced quality of experience (QoE), and efficient resource utilization. In this paper, we provide a comprehensive overview on different traits of MEC including its use cases, architecture, computation offloading, security, economic aspects, research challenges, and potential future directions.

Intelligent Resource Management Schemes for Systems, Services, and Applications of Cloud Computing Based on Artificial Intelligence

  • Lim, JongBeom;Lee, DaeWon;Chung, Kwang-Sik;Yu, HeonChang
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1192-1200
    • /
    • 2019
  • Recently, artificial intelligence techniques have been widely used in the computer science field, such as the Internet of Things, big data, cloud computing, and mobile computing. In particular, resource management is of utmost importance for maintaining the quality of services, service-level agreements, and the availability of the system. In this paper, we review and analyze various ways to meet the requirements of cloud resource management based on artificial intelligence. We divide cloud resource management techniques based on artificial intelligence into three categories: fog computing systems, edge-cloud systems, and intelligent cloud computing systems. The aim of the paper is to propose an intelligent resource management scheme that manages mobile resources by monitoring devices' statuses and predicting their future stability based on one of the artificial intelligence techniques. We explore how our proposed resource management scheme can be extended to various cloud-based systems.

엣지 컴퓨팅에서 트래픽 분산을 위한 흐름 예측 기반 동적 클러스터링 기법 (Flow Prediction-Based Dynamic Clustering Method for Traffic Distribution in Edge Computing)

  • 이창우
    • 한국멀티미디어학회논문지
    • /
    • 제25권8호
    • /
    • pp.1136-1140
    • /
    • 2022
  • This paper is a method for efficient traffic prediction in mobile edge computing, where many studies have recently been conducted. For distributed processing in mobile edge computing, tasks offloading from each mobile edge must be processed within the limited computing power of the edge. As a result, in the mobile nodes, it is necessary to efficiently select the surrounding edge server in consideration of performance dynamically. This paper aims to suggest the efficient clustering method by selecting edges in a cloud environment and predicting mobile traffic. Then, our dynamic clustering method is to reduce offloading overload to the edge server when offloading required by mobile terminals affects the performance of the edge server compared with the existing offloading schemes.

Task Scheduling and Resource Management Strategy for Edge Cloud Computing Using Improved Genetic Algorithm

  • Xiuye Yin;Liyong Chen
    • Journal of Information Processing Systems
    • /
    • 제19권4호
    • /
    • pp.450-464
    • /
    • 2023
  • To address the problems of large system overhead and low timeliness when dealing with task scheduling in mobile edge cloud computing, a task scheduling and resource management strategy for edge cloud computing based on an improved genetic algorithm was proposed. First, a user task scheduling system model based on edge cloud computing was constructed using the Shannon theorem, including calculation, communication, and network models. In addition, a multi-objective optimization model, including delay and energy consumption, was constructed to minimize the sum of two weights. Finally, the selection, crossover, and mutation operations of the genetic algorithm were improved using the best reservation selection algorithm and normal distribution crossover operator. Furthermore, an improved legacy algorithm was selected to deal with the multi-objective problem and acquire the optimal solution, that is, the best computing task scheduling scheme. The experimental analysis of the proposed strategy based on the MATLAB simulation platform shows that its energy loss does not exceed 50 J, and the time delay is 23.2 ms, which are better than those of other comparison strategies.