• Title/Summary/Keyword: Mobile Control

Search Result 3,989, Processing Time 0.028 seconds

Development of a Service Hybrid Mobile Robot for Climbing Stairs and Thresholds by Switching Wheel and Leg Gait (바퀴/4 족 동작 전환으로 계단 및 문턱 오르기가 가능한 서비스 하이브리드 이동 로봇 개발)

  • Kim, Jin-Baek;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1082-1091
    • /
    • 2007
  • In this paper, we developed a new hybrid mobile robot which can climb stairs and go over thresholds by crawl gait with embedded real-time control software. This robot is also categorized into hybrid robot that has advantages of wheeled mobile robot and legged mobile robot, but adopts gait feature of crocodile named belly crawl. We imitated the belly crawl using four legs of 2 DOF, four omni-directional wheels, and embedded control software which controls legs and wheels. This software is developed using RTAI/Linux, real-time drivers. As a result, the new hybrid mobile robot has crawl gait. Using this feature, the new hybrid mobile robot can climb stairs and go over thresholds just by path planning of each leg with size of stairs and thresholds, and computing the movement distance of robot body center without considering stability. The performance of our new hybrid mobile robot is verified via experiments.

Application of Xscale-Based Mobile Device to Motor Control (Xscale 기반의 Mobile Device를 활용한 모터 제어)

  • Han, Chul-Wan;Kim, Kab-Il;Son, Young-Ik
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.717-719
    • /
    • 2004
  • Currently mobile devices change rapidly our life and they have considerable influences over many parts of our society. If the mobile device is applied to a control system, the usability of the control system is increased with its convenient accessibility and mobility. This paper realizes a motor control system by using a mobile device. The device uses Intel Xscale PXA-250 in which Widows CE is ported. The device is very popular at the applications of mobile devices. Also we consider its application to a mobile robot such as home service robot.

  • PDF

A Study on Stable Motion Control of Mobile-Manipulators Robot System (모바일-매니퓰레이터 구조 로봇시스템의 안정한 모션제어에 관한연구)

  • Park, Moon-Youl;hwang, Won-Jun;Park, In-Man;Kang, Un-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.4
    • /
    • pp.217-226
    • /
    • 2014
  • Since the world has changed to a society of 21st century high-tech industries, the modern people have become reluctant to work in a difficult and dirty environment. Therefore, unmanned technologies through robots are being demanded. Now days, effects such as voice, control, obstacle avoidance are being suggested, and especially, voice recognition technique that enables convenient interaction between human and machines is very important. In this study, in order to conduct study on the stable motion control of the robot system that has mobile-manipulator structure and is voice command-based, kinetic interpretation and dynamic modeling of two-armed manipulator and three-wheel mobile robot were conducted. In addition, autonomous driving of three-wheel mobile robot and motion control system of two-armed manipulator were designed, and combined robot control through voice command was conducted. For the performance experiment method, driving control and simulation mock experiment of manipulator that has two-armed structure was conducted, and for experiment of combined robot motion control which is voice command-based, through driving control, motion control of two-armed manipulator, and combined control based on voice command, experiment on stable motion control of voice command-based robot system that has mobile-manipulator structure was verified.

A Study on a Mobile Terminal Platform for a High Speed Mobile Multimedia System (초고속 이동멀티미디어 시스템을 위한 이동단말 플랫폼 연구)

  • Ro, Kwang-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.96-103
    • /
    • 2009
  • This paper presents a L3 mobile terminal platform of the mobile terminal system which is a subsystem of HMm(Hig-speed Mobile Multimedia) system, which layer 3 control protocols such as RC(Radio Control), SC(Session Control), MC(Mobility Control) and application services such as VOD, FTP, VoIP for a multimedia mobile terminal are implemented on. The hardware platform is based on PXA255 and supports various interfaces and multimedia devices, and under the platform, an embedded Linux generated by the self-maden cross-toolchain, L3 control protocols and application programs were installed. The operation of HMm system under the HMm testbed has shown that this platform successfully supported SIP services, web browsing services, streaming services and etc as well as call processing. It could be the reference of the upcoming Fourth-Generation mobile terminal which the multimedia functionality will be enforced.

Development of Autonomous Mobile Robot with Speech Teaching Command Recognition System Based on Hidden Markov Model (HMM을 기반으로 한 자율이동로봇의 음성명령 인식시스템의 개발)

  • Cho, Hyeon-Soo;Park, Min-Gyu;Lee, Hyun-Jeong;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.726-734
    • /
    • 2007
  • Generally, a mobile robot is moved by original input programs. However, it is very hard for a non-expert to change the program generating the moving path of a mobile robot, because he doesn't know almost the teaching command and operating method for driving the robot. Therefore, the teaching method with speech command for a handicapped person without hands or a non-expert without an expert knowledge to generate the path is required gradually. In this study, for easily teaching the moving path of the autonomous mobile robot, the autonomous mobile robot with the function of speech recognition is developed. The use of human voice as the teaching method provides more convenient user-interface for mobile robot. To implement the teaching function, the designed robot system is composed of three separated control modules, which are speech preprocessing module, DC servo motor control module, and main control module. In this study, we design and implement a speaker dependent isolated word recognition system for creating moving path of an autonomous mobile robot in the unknown environment. The system uses word-level Hidden Markov Models(HMM) for designated command vocabularies to control a mobile robot, and it has postprocessing by neural network according to the condition based on confidence score. As the spectral analysis method, we use a filter-bank analysis model to extract of features of the voice. The proposed word recognition system is tested using 33 Korean words for control of the mobile robot navigation, and we also evaluate the performance of navigation of a mobile robot using only voice command.

Remote control by mobile and Labview (휴대폰과 Labview를 활용한 원격제어)

  • Park, Sang-Gug
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.797-801
    • /
    • 2008
  • This paper describes technical method about remote control and monitoring of local system by use personal mobile device in anytime and anywhere. Therefore, the user don't need to stay in operation room of local system. The PC server environment for the mobile connection are constructed with Apache web server, PHP and MySQL ODBC. The mobile internet homepage for the remote mobile connection is designed by Anybuilder software and mobile simulator, Openwave SDK 6.2 is used for the development. The mobile internet program can be applicate to all of domestic communication companies LGT, SKT and KTF. We use KTF mobile contains WAP browser for the test. We used NI Labview software to control and monitoring of local system. The local system, which will be controlled remotely have constructed with analog/digital signal acquisition device, signal control board and their software. By experiments, we confirmed remote control by mobile device are possible.

  • PDF

MODELING AND CONTROL STRATEGIES FOR DYNAMICAL OBSTACLE AVOIDANCE BY MOBILE ROBOT

  • Zhu, Q.;Loh, N.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.643-648
    • /
    • 1989
  • This paper presents a theoretic study and computer simulation of models and approaches for dynamical obstacle avoidance by mobile robots. The movement of obstacles in unknown environment is described by any one or a combination of three models. The control strategy of the mobile robots is formulated based on one of three approaches. A trajectory-guided control strategy for dynamical obstacle avoidance has been developed. The method greatly simplifies the control process of mobile robots, and is computationally attractive.

  • PDF

Teleoperation Control of Omni-directional Mobile Robot with Force Feedback (힘 반향 기법을 이용한 전방향 이동 로봇의 원격 제어)

  • Lee, Jeong-Hyeong;Lee, Hyung-Jik;Jung, Seul
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.243-245
    • /
    • 2007
  • This paper presents the implementation of teleoperation control of an omni-direction mobile robot. The master joystick robot has two degrees of freedom to control the movement of the slave mobile robot in the Cartesian space. In addition, the whole teleoperated control system is closed by the force feedback. The operator can feel the contact force as the slave robot makes contact with the environment. Experimental results show that the teleooerated control with force feedback has been successfully implemented.

  • PDF

Decentralized Control of Cooperative Mobile Robot Systems Using Passive Velocity Field Control Method (수동 속도장 제어법을 이용한 협조 이동로봇 시스템의 분산제어)

  • 서진호;이권순
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.129-138
    • /
    • 2004
  • In this paper, we propose a method to apply a decentralized control algorithm for passive velocity field control using virtual flywheel system to cooperative 3-wheeled mobile robots, and these subsystem are under nonholonomic constraints. The considered robotic systems convey a common rigid object in a horizontal plain. Moreover we will proof the passivity and robustness for cooperative mobile robotic systems with decentralized passive velocity field control. Finally, The effectiveness of proposed control algorithm is examined by numerical simulation for cooperation tasks with 3-wheeled mobile robot systems.

Target Tracking of the Wheeled Mobile Robot using the Combined Visual Servo Control Method (혼합 비주얼 서보 제어 기법을 이용한 이동로봇의 목표물 추종)

  • Lee, Ho-Won;Kwon, Ji-Wook;Hong, Suk-Kyo;Chwa, Dong-Kyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1245-1254
    • /
    • 2011
  • This paper proposes a target tracking algorithm for wheeled mobile robots using in various fields. For the stable tracking, we apply a vision system to a mobile robot which can extract targets through image processing algorithms. Furthermore, this paper presents an algorithm to position the mobile robot at the desired location from the target by estimating its relative position and attitude. We show the problem in the tracking method using the Position-Based Visual Servo(PBVS) control, and propose a tracking method, which can achieve the stable tracking performance by combining the PBVS control with Image-Based Visual Servo(IBVS) control. When the target is located around the outskirt of the camera image, the target can disappear from the field of view. Thus the proposed algorithm combines the control inputs with of the hyperbolic form the switching function to solve this problem. Through both simulations and experiments for the mobile robot we have confirmed that the proposed visual servo control method is able to enhance the stability compared to of the method using only either PBVS or IBVS control method.