• Title/Summary/Keyword: Mobile Communication Spectrum

Search Result 170, Processing Time 0.02 seconds

Predicting required licensed spectrum for the future considering big data growth

  • Shayea, Ibraheem;Rahman, Tharek Abd.;Azmi, Marwan Hadri;Han, Chua Tien;Arsad, Arsany
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.224-234
    • /
    • 2019
  • This paper proposes a new spectrum forecasting (SF) model to estimate the spectrum demands for future mobile broadband (MBB) services. The model requires five main input metrics, that is, the current available spectrum, site number growth, mobile data traffic growth, average network utilization, and spectrum efficiency growth. Using the proposed SF model, the future MBB spectrum demand for Malaysia in 2020 is forecasted based on the input market data of four major mobile telecommunication operators represented by A-D, which account for approximately 95% of the local mobile market share. Statistical data to generate the five input metrics were obtained from prominent agencies, such as the Malaysian Communications and Multimedia Commission, OpenSignal, Analysys Mason, GSMA, and Huawei. Our forecasting results indicate that by 2020, Malaysia would require approximately 307 MHz of additional spectrum to fulfill the enormous increase in mobile broadband data demands.

A Study on Activation of New Mobile Communication Spectrum in the Environment of Mobile Big Data Traffic (모바일 빅 데이터 트래픽 환경에서 새로운 이동통신 주파수의 활성화 방안 연구)

  • Chung, Woo-Ghee
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.42-46
    • /
    • 2012
  • This paper analyses technical and economical conditions which activate the use of mobile communication spectrum not to limit the growth of mobile broadband service because of mobile big data traffic and proposes the method which activate the use of mobile communication spectrum. To activate new mobile communication spectrum the expenditure and income of investment should be balanced. The activation of new mobile communication spectrum to process mobile big data traffic depends on technical and economical conditions, internal and external factors of service provider. The investment expenditure is relate to CAPEX, OPEX which is internal factors of service provider and to spectrum price which is external factor of service. The investment income is relate to tariff system which is internal factors of service provider and to spectrum neutrality which is external factor of service provider. The activation of new mobile communication spectrum can be implemented when the investment expenditure and investment income meet the balance including the spectrum price in the investment expenditure and the tariff system which is able to extend network and the income based on traffic increase by external contents in the investment income.

A Novel Prediction-based Spectrum Allocation Mechanism for Mobile Cognitive Radio Networks

  • Wang, Yao;Zhang, Zhongzhao;Yu, Qiyue;Chen, Jiamei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2101-2119
    • /
    • 2013
  • The spectrum allocation is an attractive issue for mobile cognitive radio (CR) network. However, the time-varying characteristic of the spectrum allocation is not fully investigated. Thus, this paper originally deduces the probabilities of spectrum availability and interference constrain in theory under the mobile environment. Then, we propose a prediction mechanism of the time-varying available spectrum lists and the dynamic interference topologies. By considering the node mobility and primary users' (PUs') activity, the mechanism is capable of overcoming the static shortcomings of traditional model. Based on the mechanism, two prediction-based spectrum allocation algorithms, prediction greedy algorithm (PGA) and prediction fairness algorithm (PFA), are presented to enhance the spectrum utilization and improve the fairness. Moreover, new utility functions are redefined to measure the effectiveness of different schemes in the mobile CR network. Simulation results show that PGA gets more average effective spectrums than the traditional schemes, when the mean idle time of PUs is high. And PFA could achieve good system fairness performance, especially when the speeds of cognitive nodes are high.

Calculation of Spectral Efficiency for Estimating Spectrum Requirements of IMT-Advanced in Korean Mobile Communication Environments

  • Chung, Woo-Ghee;Lim, Eun-Taek;Yook, Jong-Gwan;Park, Han-Kyu
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.153-161
    • /
    • 2007
  • In this paper, we analyze the algorithm of the methodology developed by ITU for the calculation of spectrum requirements of IMT-Advanced. We propose an approach to estimate user density using traffic statistics, and to estimate spectrum efficiencies using carrier-to-interference ratio distribution and capacity theory as well as experimental data under Korean mobile communication environments. We calculate the IMT-Advanced spectrum requirements based on the user density and spectral efficiencies acquired from the new method. In the case of spectral efficiency using higher modulation and coding schemes, the spectrum requirement of IMT-Advanced is approximately 2700 MHz. When applying a $2{\times}2$ multiple-input multiple-output (MIMO) antenna system, it is approximately 1500 MHz; when applying a $4{\times}4$ MIMO antenna system, it is approximately 1050 MHz. Considering that the development of new technology will increase spectrum efficiency in the future, the spectrum requirement of IMT-Advanced in the Korean mobile communication environment is expected to be approximately 1 GHz bandwidth.

  • PDF

Study on Effective 5G Network Deployment Method for 5G Mobile Communication Services (5G 이동통신 서비스를 위한 효율적인 5G 망구축 방안에 관한 연구)

  • CHUNG, Woo-Ghee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.353-358
    • /
    • 2018
  • We herein analyze the service traffic characteristics and spectrum of the 5G mobile communication and suggest the effective 5G network deployment method for 5G mobile communication services. The data rates of the 5G mobile communication are from several kbps (voice and IoT) up to 1 Gbps (hologram, among others). The 5G mobile communication services show the diverse cell coverage environments owing to the use of diverse service data rates and multiple spectrum bands. To effectively support the 5G mobile communication services, the network deployment requires the optimization of the service coverages for new service environments and multiple spectrum bands. Considering the 5G spectrum bandwidth debated at present, if the 5G services of 100 Mbps can be supported in the 200 m cell edge using the 3.5 GHz spectrum bands, the 5G services of the 1 Gbps hologram and 500-Mbps 4k UHD can be supported in the cell edges of 50 m and 100 m using the 28 GHz spectrum bands. Therefore, the 5G services can be supported effectively by the 5G network deployment using spectrum portfolio configurations to match the diverse 5G services and multiple bands.

Analysis of Radio Spectrum Policy for the Fifth Generation Mobile Communications (5G 이동통신을 위한 전파정책 분석)

  • Kim, Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.8
    • /
    • pp.679-689
    • /
    • 2015
  • The 5G mobile communication technologies have been extensively developed with the era of mobile broadband, but spectrum policy for this service has not yet set up. In this paper, We have investigated the 5G mobile service and analyzed the 5G spectrum policy taking the developing technologies into account. Based on the results of these analyses, We propose an expansion of spectrum sharing in the 3~5 GHz bands, spectrum harmonization of 5 GHz bands, and restructuring of spectrum management administration from currently three distributed management to centralized spectrum management structure.

A Study on the methodology of Estimation National Spectrum Requirements and Network Resources depending on traffic model variation in future mobile communications service (차세대 이동통신서비스에서 트래픽 모델 변화에 따른 국내 주파수 소요량 및 무선 네트워크 자원 산출 방법에 관한 연구)

  • Chung, Woo-Ghee;Hong, Een-Kee
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.118-127
    • /
    • 2003
  • ITU-R recommends general methodology to provide current and future mobile communication services and 12 parameters to calculate terrestrial spectrum requirements. In this paper we analyzed 12 parameters suggested by ITU-R Recommendation and provided a method to determine a specific parameter value in a specific region. We calculated spectrum requirements and network resources for year 2010 in Korean mobile environment by applying parameter values acquired in parameter analysis method of this paper. And we analyzed the variation of spectrum requirements by calculating spectrum requirements depending on variation of parameters for future mobile communication services.

  • PDF

System Phase Noise for Mobile Satellite Communication Service (이동형 위성통신 서비스를 위한 시스템 위상 잡음)

  • Kim Young-wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1780-1786
    • /
    • 2005
  • The phase error generated in the transmission system affects the performance of digital transmission signal. The phase error are generated by random phase noise and tracking phase error due to denier phenomenon. In the mobile satellite communication system that generates the doppler frequency, which is a system with a movement, the proper system phase noise spectrum should be designed based on analyses for phase noise and static phase error effects. Based on the analyses of the doppler frequency and the phase error for bilateral satellite communication system providing an asynchronous service, the phase noise spectrums for the mobile satellite communication are designed in this paper. Also, the available transmission services under the less doppler effect are proposed and the proper signal source units for a required transmission system can be designed under the proposed system phase noise spectrum.

Design of RF Digital Spectrum Analyser for Mobile Communication (이동 통신용 RF 디지털 스펙트럼 분석기 설계)

  • Woo, Kwang-Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.29-34
    • /
    • 2007
  • It is important to analyse the frequency spectrum for the measurement of modulated signal, distortion, and noise. The frequency spectrum analysis is performed by the execution of Radix-2 DIT DFT i.e. FFT algorithm. The discrete input signal converted by A/D converter from the input signal in time domain is mathematically transformed to the frequency spectrum by FFT algorithm. In this study, we design the digital spectrum analyser by the hardware based on the TMS320F2812 DSP and AD9244 converter, and by the software based on the C28x S/W modules. We can timely analyse the frequency spectrum in mobile communication system by the digital frequency analyser based on the high performance DSP and S/W modules. This real-time analysing capability is the important performance in the internet-based mobile communication server system.

Estimation of Spectrum Requirements for 3G Mobile Communications Based on the Analysis of Korean Mobile Communications Traffic (국내 이동 통신 트래픽 분석에 의한 3G 이동 통신 주파수 소요량 산출)

  • Chung, Woo-Ghee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.257-263
    • /
    • 2009
  • Recently, as the 3G services of Korea have stepped into the developing stage and the traffic has been rapidly increasing, the spectrum requirements have been getting very large. Therefore spectrum reforming is considered actively and firstly exact methodology of spectrum requirement estimation is needed. But existing methodology depends on the future's service forecast than the present substantial data. This paper proposed the exact methodology of spectrum requirement estimation is based on the real data. So this paper analyzed the characteristics of Korean mobile communication traffic based on the real data and the algorithm suitable for estimation of spectrum requirements for 3G mobile communications, and calculated the parameters needed to estimate the spectrum requirements. Based on the traffic parameters of December 2007, simulations to Bet the estimation of annual spectrum requirements were implemented for the two different cases: one of which is 44 % annual increase in the data traffic and the other is 21 % annual increase. The simulation results show 90 MHz for the first case and 60 MHz for the second case in December 2011.