• 제목/요약/키워드: MoSi_2Intermetallics MoSi_2

검색결과 3건 처리시간 0.015초

고온선박엔진용 MoSi$_2$금속간화합물의 경도와 방전가공특성 (Hardness and EDM Processing of MoSi$_2$Intermetallics for High Temperature Ship Engine)

  • 윤한기;이상필
    • 한국해양공학회지
    • /
    • 제16권6호
    • /
    • pp.60-64
    • /
    • 2002
  • This paper describes the machining characteristics of the MoSi$_2$--based composites through the process of electric discharge drilling with various tubular electrodes. In addition to hardness characteristics, microstructures of Nb/MoSi$_2$laminate composites were evaluated from the variation of fabricating conditions, such as preparation temperature, applied pressure, and pressure holding time. MoSi$_2$-based composites have been developed in new materials for jet engines of supersonic-speed airplanes and gas turbines for high-temperature generators. These high performance engines may require new hard materials with high strength and high temperature-resistance. Also, with the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material. The tool electrode is almost -unloaded, because there is n direct contact between the tool electrode and the work piece. By combining a non-conducting ceramic with more conducting ceramic, it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and MoSi$_2$ powder was an excellent strategy to improve hardness characteristics of monolithic MoSi$_2$. However, interfacial reaction products, like (Nb, Mo)SiO$_2$and Nb$_2$Si$_3$formed at the interface of Nb/MoSi$_2$, and increased with fabricating temperature. MoSi$_2$composites, with which a hole drilling was not possible through the conventional machining process, enhanced the capacity of ED-drilling by adding MbSi$_2$, relative to that of SiC or ZrO$_2$reinforcements.

$MoSi_2$ 금속간화합물 복합재료의 미세구조와 방전가공특성 (Microstructure and EDM Processing of $MoSi_2$ Intermetallic Composite)

  • 윤한기;이상필;윤경욱;김동현
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.23-28
    • /
    • 2002
  • This paper describes the machining characteristics of the $MoSi_2$ based composites by electric discharge drilling with various tubular electrodes, besides, Hardness characteristics and microstructures of $Nb/MoSi_2$ laminate composites were evaluated from the variation of fabricating conditions such as preparation temperature, applied pressure and pressure holding time. $MoSi_2$ -based composites has been developed in new materials for jet engine of supersonic-speed airplanes and gas turbine for high- temperature generator. Achieving this objective may require new hard materials with high strength and high temperature-resistance. However, With the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material, the tool electrode being almost non-unloaded, because there is no direct contact between the tool electrode and the workpiece. By combining a nonconducting ceramics with more conducting ceramic it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and $MoSi_2$ powder was an excellent strategy to improve hardness characteristics of monolithic $MoSi_2$. However, interfacial reaction products like (Nb, Mo)$SiO_2$ and $Nb_2Si_3$ formed at the interface of $Nb/MoSi_2$ and increased with fabricating temperature. $MoSi_2$ composites which a hole drilling was not possible by the conventional machining process, enhanced the capacity of ED-drilling by adding $NbSi_2$ relative to that of SiC or $ZrO_2$ reinforcements.

  • PDF

합금원소 첨가가 TiAI계의 내산화성에 미치는 영향 (Effects of 3rd Element Additions on the Oxidation Resistance of TiAi Intermetallics)

  • 김봉구;황성식;양명승;김길무;김종집
    • 한국재료학회지
    • /
    • 제4권6호
    • /
    • pp.669-680
    • /
    • 1994
  • 합금원소(Cr, V, Si. Mo, Nb)가 첨가된 TiAi 금속간화합물의 고온 산화거동을 대기중의 900~$1100^{\circ}C$에서 관찰하였다. 산화반응물은 XRD, SEM, WDX을 이용하여 분석하였다. 등온 산화에 있어서 Cr과 V이 각각 첨가된 시편은 무게증가가 많았으나, Si, Mo, Vb가 각각 첨가된 시편은 상대적으로 무게증가각 적었아. 그리고, Cr과 V이 각각 첨가된 시편의 산화속도는 TiAi의 그것보다 항상 크게 나타났으며, Si, Mo, Vb가 각각 첨가된 시편의 산화속도는 TiAi의 그것보다 향상되지 않고, Si, Mo또는 Nb 첨가는 내산화성을 향상시킨다. Si, Mo, Nb이 각각 첨가된 TiAI합금표면에 형성된 산화물은 보호막 역할을 함으로 산소와 합금원소의 확산을 감소시키는 역할을 하였다. 특히, Nb는 산화의 초기단계에서는 $AI_{2}O_{3}$를 형성하려는 경향이 강하기 때문에 연속적인 $AI_{2}O_{3}$층과 조밀한 $Tio_{2}+AI_{2}O_{3}$ 혼합층이 형성되었다. Nb가 첨가된 합금의 백금 marker 실험결과에 따르면, 산소가 주로 합금내부로 확산하여 합금표면에서 산화물을 형성하였다. $900^{\circ}C$에서의 열반복주기(thermal cyclic)산화실험 결과, 다른 합금원소와 비교해 볼 때 Cr또는 Nb첨가가 금속기지와 산화층간의 접착력을 향상시키는 것으로 나타났다.

  • PDF