• Title/Summary/Keyword: Mo-Cu-N

Search Result 109, Processing Time 0.031 seconds

ITO 성장온도에 따른 Cu(In,Ga)Se2 박막 태양전지의 특성 분석

  • Jo, Dae-Hyeong;Jeong, Yong-Deok;Lee, Gyu-Seok;Park, Rae-Man;Kim, Gyeong-Hyeon;Choe, Hae-Won;Kim, Je-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.399-399
    • /
    • 2011
  • 본 논문에서는 Indium tin oxide (ITO) 투명전극의 성장온도($T_G$)가 Cu(In,Ga)$Se_2$ (CIGS) 박막태양전지에 미치는 영향을 살펴 보았다. ITO 박막은 radio-frequency magnetron sputtering을 이용하여 상온에서 $350^{\circ}C$까지의 다양한 $T_G$ 조건에서 i-ZnO/ glass와 i-ZnO/CdS/CIGS/Mo/glass 기판에 증착되었다. ITO의 비저항과 CdS/CIGS 계면 특성은 $T_G$에 크게 영향을 받았다. $T_G{\leq}200^{\circ}C$에서는 $T_G$가 증가할수록 ITO 저항이 감소하였고 이에 따른 series 저항 감소가 태양전지 성능 향상에 기여하였다. 하지만 $T_G$ > $200^{\circ}C$에서는 CdS 버퍼층의 Cd이 CIGS 층으로 확산되어 소자의 p-n 계면이 파괴되는 것을 발견하였다. $T_G=200^{\circ}C$에서 ITO를 증착한 CIGS 태양전지의 경우 가장 높은 광전변환효율을 보였다.

  • PDF

Thermodynamic Properties of the Cell Systems made of the Metal and Its Oxide Electrodes (금속과 그 산화물 전극으로 된 전지 계들의 열역학적 성질)

  • Kwon Sun Roh;Eun Seok Lee;Alla F. Mayorova;Svetlana N. Mudrezova;Yeo, Cheol Hyeon
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.7
    • /
    • pp.635-641
    • /
    • 1993
  • Electrochemical cell, $Pt|air(PO_2=5.3{\times}10^{-3}atm)|Zr_{0.85}Ca_{0.15}O_{1.85}|air(PO_2= 0.21atm)|Pt$, has been designed to characterize the solid electrolyte and the temperature dependence of the electromotive force (EMF) has been measured in a temperature range of 600∼1000${\circ}$C. Solid electrolyte shows pure ionic conduction of the oxygen anion. The Fe-FexO, Co-CoO, Ni-NiO, and Cu2O-CuO electrodes have been prepared by mixing the 1 : 1 mole ratio of each metal and metal oxide and then by heating at 800${\circ}$C for 6 hours. Electrochemical cells, Pt│M(s), $MO(s)|Zr_{0.85}Ca_{0.15}O_{1.85}|air(PO_2=0.21atm)|Pt$, have been designed and the temperature dependence of the EMF has also been measured in the same temperature range. The changes of the thermodynamic state functions for the formation of the metal oxides are calculated from the electromotive forces and their temperature dependences. The material properties of the oxide systems are also discussed with the function changes.

  • PDF

Effects of bottom electrodes on the orientation of piezoelectric thin films and the frequency response of resonators in FBARs (체적 탄성파 공진기의 하부 전극이 압전 박막의 배향성 및 공진기의 압전 특성에 미치는 영향)

  • Lee, Myung-Ho;Jung, Jun-Phil;Lee, Jin-Bock;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1397-1399
    • /
    • 2002
  • Effects of bottom electrode materials (Al, Cu, Ti, and Mo), included in film bulk acoustic resonators (FBARs), on the orientation of piezoelectric AlN thin films and the frequency response characteristic of resonators were investigated. The texture coefficient (TC) for (002) orientation, crystallite size, full width half maximum (FWHM), and surface roughness of deposited AlN films were measured for the various bottom electrodes. The return tosses estimated from the frequency responses of fabricated resonators were also compared. Experimental results showed that the difference of lattice constant and thermal expansion coefficient between the bottom electrode and the AlN film were the most important factors for achieving a high performance resonator.

  • PDF

Distribution of Cadmium, Copper, Lead, and Zinc in Paddy Soils around an Old zinc Mine (가학광산 주변 논토양의 카드뮴, 구리, 납 및 아연 함량 분포)

  • Yoo, Sun-Ho;Ro, Kwang-Jun;Lee, Sang-Mo;Park, Moo-Eon;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.424-431
    • /
    • 1996
  • This study was carried out to provide information for establishing counter measures of soil pollution through analysis of Cd. Cu, Pb, and Zn in paddy soils and brown rice. Cadmium, Cu, Pb, and Zn contents in soils were analyzed and distribution maps for these heavy metals were prepared. Heavy metal contents in brown rice were also measured. Average contents of Cd, Cu, Pb, and Zn in surface paddy soils extracted with 0.1 N HCl were 7.4, 35.8, 98.9, and $118.8mg\;kg^{-1}$, respectively. These were 9 times (Cu) to 50 times (Cd) higher than the background level of heavy metals in unpolluted paddy soils in Korea. The contents of Pb and Zn were lower than those measured in 1980, whereas Cd content did not decrease. The levels of heavy metal contamination in paddy soils may not affect growth or yield of rice plant, however, Cd contents indicated a level of serious concern to humans. The average contents of Cd, Cu, Pb, and Zn in brown rice were 0.38, 2.38, 1.31 and $22.31mg\;kg^{-1}$, respectively.

  • PDF

N- and P-doping of Transition Metal Dichalcogenide (TMD) using Artificially Designed DNA with Lanthanide and Metal Ions

  • Kang, Dong-Ho;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.292-292
    • /
    • 2016
  • Transition metal dichalcogenides (TMDs) with a two-dimensional layered structure have been considered highly promising materials for next-generation flexible, wearable, stretchable and transparent devices due to their unique physical, electrical and optical properties. Recent studies on TMD devices have focused on developing a suitable doping technique because precise control of the threshold voltage ($V_{TH}$) and the number of tightly-bound trions are required to achieve high performance electronic and optoelectronic devices, respectively. In particular, it is critical to develop an ultra-low level doping technique for the proper design and optimization of TMD-based devices because high level doping (about $10^{12}cm^{-2}$) causes TMD to act as a near-metallic layer. However, it is difficult to apply an ion implantation technique to TMD materials due to crystal damage that occurs during the implantation process. Although safe doping techniques have recently been developed, most of the previous TMD doping techniques presented very high doping levels of ${\sim}10^{12}cm^{-2}$. Recently, low-level n- and p-doping of TMD materials was achieved using cesium carbonate ($Cs_2CO_3$), octadecyltrichlorosilane (OTS), and M-DNA, but further studies are needed to reduce the doping level down to an intrinsic level. Here, we propose a novel DNA-based doping method on $MoS_2$ and $WSe_2$ films, which enables ultra-low n- and p-doping control and allows for proper adjustments in device performance. This is achieved by selecting and/or combining different types of divalent metal and trivalent lanthanide (Ln) ions on DNA nanostructures. The available n-doping range (${\Delta}n$) on the $MoS_2$ by Ln-DNA (DNA functionalized by trivalent Ln ions) is between $6{\times}10^9cm^{-2}$ and $2.6{\times}10^{10}cm^{-2}$, which is even lower than that provided by pristine DNA (${\sim}6.4{\times}10^{10}cm^{-2}$). The p-doping change (${\Delta}p$) on $WSe_2$ by Ln-DNA is adjusted between $-1.0{\times}10^{10}cm^{-2}$ and $-2.4{\times}10^{10}cm^{-2}$. In the case of Co-DNA (DNA functionalized by both divalent metal and trivalent Ln ions) doping where $Eu^{3+}$ or $Gd^{3+}$ ions were incorporated, a light p-doping phenomenon is observed on $MoS_2$ and $WSe_2$ (respectively, negative ${\Delta}n$ below $-9{\times}10^9cm^{-2}$ and positive ${\Delta}p$ above $1.4{\times}10^{10}cm^{-2}$) because the added $Cu^{2+}$ ions probably reduce the strength of negative charges in Ln-DNA. However, a light n-doping phenomenon (positive ${\Delta}n$ above $10^{10}cm^{-2}$ and negative ${\Delta}p$ below $-1.1{\times}10^{10}cm^{-2}$) occurs in the TMD devices doped by Co-DNA with $Tb^{3+}$ or $Er^{3+}$ ions. A significant (factor of ~5) increase in field-effect mobility is also observed on the $MoS_2$ and $WSe_2$ devices, which are, respectively, doped by $Tb^{3+}$-based Co-DNA (n-doping) and $Gd^{3+}$-based Co-DNA (p-doping), due to the reduction of effective electron and hole barrier heights after the doping. In terms of optoelectronic device performance (photoresponsivity and detectivity), the $Tb^{3+}$ or $Er^{3+}$-Co-DNA (n-doping) and the $Eu^{3+}$ or $Gd^{3+}$-Co-DNA (p-doping) improve the $MoS_2$ and $WSe_2$ photodetectors, respectively.

  • PDF

Induced Activity and Space Dose Distribution from Medical Linear Accelerator (의료용(醫療用) 선형가속기(線型加速器)에 의한 산난공간(散亂空間) 선량분포(線量分布)와 유도방사능(誘導放射能))

  • Chu, Sung-Sil;Park, Chang-Yun
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.1
    • /
    • pp.51-56
    • /
    • 1986
  • It is important to measure and protect from the radiation space dose and induced activity at the high energy medical linear accelerator facilities. These are to consider the additional risk to patients undergoing treatment, machine operators and staff members. Measurements of the space dose distribution and induced radioactivity at the 18 MeV medical linear accelerator facility in the Yonsei Cancer Center. 1. Exposure space dose for 300 rads monitor doses of 18 MeV electron are measured as 50 mR at 1 meter from patients. 2. Exposure space dose for 300 rads monitor doses of 10 MV X-ray are detected as 350 mR at 1 meter from phantom. 3. Induced radioactivity by photonuclear reaction was measured as 0.65 mR/hr from collimater after 30 Gy(3,000 rads) irradiated. 4. Analyzing the decay curves and energy spectrum of induced radioactivity, detected a few materials to be activated by photoneutron reaction, $^{65}Cu({\gamma}{\cdot}n)\;^{64}Cu,\;^{186}W({\gamma}{\cdot}n)\;^{185}W,\;^{181}Ta({\gamma}{\cdot}n)\;^{180}Ta,\;^{199}Au({\gamma}{\cdot}n)\;^{198}Au$.

  • PDF

Investigation of trace element contamination in steam sediments in the Chungnam coal mine area using geostatistical approach (지구 통계학적 방법에 의한 충남 탄전 지역 하상퇴적물의 미량원소 오염조사)

  • 황춘길
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.63-72
    • /
    • 1999
  • In order to examine the contamination levels of trace elements in stream sediments in the Chungnam coal mine area, stream sediment and water samples were collected and analyzed for trace elements. The pH of stream water was neutral or weak-alkaline and the mobility of metal in stream sediments was supposed to be low. From the result of cluster analysis, non-polluted sampling stations can be distinguished from polluted sampling stations influenced by mining activities. The trace element concentrations in sediments from non-polluted zone were considered to be the natural backround concentrations of this area. The trace element concentrations in sediment samples from the mining area were higher than those from non-polluted area, and contaminated area of enriched trace element levels need to be properly managed. From the results of discriminant and regression analyses, concentrations of Cd, Cu, Pb AND zN and predicted values of Be, Mo, and Ni in Chungnam coal mine area were found to be lower than those in metal mining areas in Korea.

  • PDF

Nature of the Interfacial Regions in the Antiferromagnetically-coupled Fe/Si Multilayered Films

  • Moon, J.C.;Y.V. Kudryavtsev;J.Y.Rhee;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.174-174
    • /
    • 2000
  • A strong antiferromagnetic coupling in Fe/Si multilayered films (MLF) had been recently discovered and much consideration has been given to whether the coupling in the Fe/Si MLF system has the same origin as the metal/metal MLF. Nevertheless, the nature of the interfacial ron silicide is still controversial. On one hand, a metal/ semiconductor structure was suggested with a narrow band-gap semiconducting $\varepsilon$-FeSi spacer that mediates the coupling. However, some features show that the nature of coupling can be well understood in terms of the conventional metal/metal multilayered system. It is well known that both magneto-optical (MO) and optical properties of a metal depend strongly on their electronic structure that is also correlated with the atomic and chemical ordering. In this study, the nature of the interfacial regions is the Fe/Si multilayers has been investigated by the experimental and computer-simulated MO and optical spectroscopies. The Fe/Si MLF were prepared by rf-sputtering onto glass substrates at room temperature with the number of repetition N=50. The thickness of Fe sublayer was fixed at 3.0nm while the Si sublayer thickness was varied from 1.0 to 2.0 nm. The topmost layer of all the Fe/Si MLF is Fe. In order to carry out the computer simulations, the information on the MO and optical parameters of the materials that may constitute a real multilayered structure should be known in advance. For this purpose, we also prepared Fe, Si, FeSi2 and FeSi samples. The structural characterization of Fe/Si MLF was performed by low- and high -angle x-ray diffraction with a Cu-K$\alpha$ radiation and by transmission electron microscopy. A bulk $\varepsilon$-FeSi was also investigated. The MO and optical properties were measured at room temperature in the 1.0-4.7 eV energy range. The theoretical simulations of MO and optical properties for the Fe/Si MLF were performed by solving exactly a multireflection problem using the scattering matrix approach assuming various stoichiometries of a nonmagnetic spacer separating the antiferromagnetically coupled Fe layers. The simulated spectra of a model structure of FeSi2 or $\varepsilon$-FeSi as the spacer turned out to fail in explaining the experimental spectra of the Fe/Si MLF in both intensity and shape. Thus, the decisive disagreement between experimental and simulated MO and optical properties ruled out the hypothesis of FeSi2 and $\varepsilon$-FeSi as the nonmagnetic spacer. By supposing the spontaneous formation of a metallic ζ-FeSi, a reasonable agreement between experimental and simulated MO and optical spectra was obtained.

  • PDF

Impacts of Soil Microbial Populations on Soil Chemical and Biological Properties under Tropical Dry Evergreen Forest, Coromandel Coast, India

  • Sudhakaran, M.;Ramamoorthy, D.;Swamynathan, B.;Ramya, J.
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.4
    • /
    • pp.370-377
    • /
    • 2014
  • There are very few studies about soil chemical and biological properties under tropical dry evergreen forest Coromandel Coast, India. The present study was conducted in six tropical dry evergreen forests sites such as Oorani, Puthupet, Vadaagram, Kotthatai, Sendrakillai and Palvathunnan. We measured the quantity of soil chemical, biological properties and selected soil microorganisms for investigating the impacts of soil microbial populations on soil chemical and biological properties. The result showed that total N, P, Ca, S, Fe, Mn, Cu, Co, exchangeable K, Olson P, extractable Ca and phosphobacterial population were higher in the soil from Kothattai forest site. Organic carbon, total Mg, extractable Na, soil respiration, ${\beta}$-glucosidase activity, bacterial population, fungi population and actinomycetes population were higher in the soil from Palvathunn forest site. Total K, $NH_4{^+}$-N, $NO_3{^-}$-N, exchangeable K, extractable Ca, extractable Na, azotobacter population, bacillus population and rhizobacteria population were higher in the soil from Sendrakillai. Beijerinckia population, rhizobacteria and soluble sodium were higher in Puthupet forest soil. Total Si, total Na and exchangeable K were higher in soil from Oorani forest site. Total Mo and exchangeable K were higher in the soil from Vadaagaram forest site. The results showed that organic carbon, total N, $NH_4{^+}$-N, $NO_3{^-}$-N, extractable P, extractable Ca, soil respiration and ${\beta}$-glucosidase were significantly correlated with soil microbial populations. Therefore soil microorganisms are important factor for maintaining soil quality in tropical dry evergreen forest.

Selective Oxidation of Acrolein over Cupric Salt of 12-Molybdophosphoric Acid (12-몰리브도 인산 동염 촉매상에서 아크롤레인의 선택 산화반응)

  • Kim, Kyung-Hoon;Na, Suk-Eun;Park, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.721-730
    • /
    • 1993
  • Various catalysts of $Cu_xH_3-{_{2x}}PMo_{12}O_{40}{\cdot}_nH_2O$ with different x-values have been prepared and characterized by thermal analysis, X-ray powder diffraction, infrared spectroscopy, BET surface-area measurement, electron microscopy, and temperature programmed desorption of ammonia. The properties of these catalysts in acrolein oxidation have been investigated in a continuous-flow fixed-bed reactor. The catalysts lost their water of crystallization at about $200^{\circ}C$ and their constitutional water between 300 and $400^{\circ}C$. The Keggin structure of the catalysts was identified by infrared spectroscopy. The decomposition of Keggin anion, $(PMo_{12}O_{40})^{3-}$, was increased with the increase of substituted copper content and identifiable $MoO_3$ and $P_2O_5$ as decomposition products were observed. The conversion of acrolein decreased with the increase of x probably due to the decrease of specific surface area and of total amount of acid sites. But specific reaction rate and selectivity to acrylic acid were maximized at x=1.0, and it showed specific acid site distributions.

  • PDF