• 제목/요약/키워드: Mo electrode

검색결과 236건 처리시간 0.031초

Adhesion of Cu/Interlayer/Polyimide Flexible Copper Clad Laminate Depending on the Ni-Cr-X Interlayers

  • Kim, Si Myeong;Jo, Yoo Shin;Kim, Sung June;Kim, Sang Ho
    • 한국표면공학회지
    • /
    • 제50권3호
    • /
    • pp.164-169
    • /
    • 2017
  • Ni-Cr-X ternary interlayers were investigated to improve the adhesion of Cu/Ni-Cr/Polyimide flexible copper clad laminates. The ternary compounds are sputtered Ni-Cr-X films (where X is one of Nb, V, Mo, or Ti), and the effect of third elements on the adhesion was evaluated and investigated chemically and mechanically. The feel strength was higher in the order of Ni-Cr-Nb > Ni-Cr-V > Ni-Cr > Ni-Cr-Mo > Ni-Cr-Ti. Nb, which has a comparable standard electrode potential to Cr, increased the adhesion, while Ti, with a low standard electrode potential, degraded the adhesion. The Ni-Cr-Nb interlayer was amorphous, while Ni-Cr-Ti was partially crystalline. The similar morphology structure of the Ni-Cr-Nb interlayer with polyimide resulted in a better adhesion.

RF MEMS 기법을 이용한 US PCS 대역 FBAR BPF 개발

  • 박희대
    • 한국전자파학회지:전자파기술
    • /
    • 제14권3호
    • /
    • pp.15-19
    • /
    • 2003
  • 본 연구에서는 RF magnetron sputtering으로 상온에서 증착된 ZnO압전박막을 이용하여, 1.96 GHz 대역의 air gap type의 FBAR BPF를 개발하였다. FBAR BPF는 Si wafer에 절연막으로 열 산화막층(SiO$_2$)을 형성한 후, 형성된 산화막 위에 바닥전극(Al), ZnO압전층 그리고 상부전극(Mo)를 차례로 RF magnetron sputter장비를 사용하여 증착시키고, Si wafer를 dry etching하여 air hole을 구현함으로써 device를 제조하였다. 제조된 FBAR BPF의 ZnO압전층의 XRD분석 결과 (002)면 방향으로 우선 배향되었으며, XRC의 $\sigma$값은 1.018이었다. 삽입손실 1 dB 내외로 우수한 특성을 나타내었다.

수종 임플랜트 금속의 내식성에 관한 전기화학적 연구 (AN ELECTROCHEMICAL STUDY ON THE CORROSION RESISTANCE OF THE VARIOUS IMPLANT METALS)

  • 전진영;김영수
    • 대한치과보철학회지
    • /
    • 제31권3호
    • /
    • pp.423-446
    • /
    • 1993
  • Titanium and its alloys are finding increasing use in medical devices and dental implants. The strong selling point of titanium is its resistance to the highly corrosive body fluids in which an implant must survive. This corrosion resistance is due to a tenacious passive oxide or film which exists on the metal's surface and renders it passive. Potentiodynamic polarization measurement is one of the most commonly used electro-chemical methods that have been applied to measure corrosion rates. And the potentiodynamic polarization test supplies detailed information such as open circuit, rupture, and passivation potential. Furthermore, it indicates the passive range and sensitivity to pitting corrosion. This study was designed to compare the corrosion resistance of the commonly used dental implant materials such as CP Ti, Ti-6A1-4V, Co-Cr-Mo alloy, and 316L stainless steel. And the effects of galvanic couples between titanium and the dental alloys were assessed for their useful-ness-as. materials for superstructure. The working electrode is the specimen , the reference electrode is a saturated calomel electrode (SCE), and the counter electrode is made of carbon. In $N_2-saturated$ 0.9% NaCl solutions, the potential scanning was performed starting from -800mV (SCE) and the scan rate was 1 mV/sec. At least three different polarization measurements were carried out for each material on separate specimen. The galvanic corrosion measurements were conducted in the zero-shunt ammeter with an implant supraconstruction surface ratio of 1:1. The contact current density was recorded over a 24-hour period. The results were as follows : 1. In potential-time curve, all specimens became increasingly more noble after immersion in the test solution and reached between -70mV and 50mV (SCE) respectively after 12 hours. 2. The Ti and Ti alloy in the saline solution were most resistant to corrosion. They showed the typical passive behavior which was exhibited over the entire experimental range. Therefore no breakdown potentials were observed. 3. Comparing the rupture potentials, Ti and Ti alloy had the high(:st value (because their break-down potentials were not observed in this study potential range ) followed by Co-Cr-Mo alloy and stainless steel (316L). So , the corrosion resistance of titanium was cecellent, Co-Cr-Mo alloy slightly inferior and stainless steel (316L) much less. 4. The contact current density sinks faster than any other galvanic couple in the case of Ti/gold alloy. 5. Ag-Pd alloy coupled with Ti yielded high current density in the early stage. Furthermore, Ti became anodic. 6. Ti/Ni-Cr alloy showed a relatively high galvanic current and a tendency to increase.

  • PDF

몰리브덴 전극의 형성조건에 따른 $CU(InGa)Se_2$ 박막 태양전지의 특성 (Characteristics of $CU(InGa)Se_2$Thin Film Solar Cells with Deposition Condition of Mo Electrode)

  • 김석기;한상옥
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권12호
    • /
    • pp.607-613
    • /
    • 2001
  • Molybdenum thin films were deposited on the soda lime glass(SLG) substrates by direct-current planar magnetron sputtering, with a sputtering power density of $4.44W/cm^2$. The working pressure was varied from 0.5 mtorr to 20 mtorr to gain a better understanding of the effect of sputtering pressure on the morphology and microstructure of the Mo film. Thin films of $CU(InGa)Se_2$ (CIGS) were deposited on the Mo-coated glass by three stage co-evaporation process. The highest efficiency device was obtained at the maximum value of the tensive stress. The morphology of Mo-coated films were examined by using scanning electron microscopy The film's microstructure, such as the preferred orientation, the full width at half-maximum(FWHM), and the residual intrinsic stress were examined by X-ray diffraction.

  • PDF

Study on optimal elctrode's thickness at passive OLED on power consumption

  • 김상길;박성준;김정훈;송건주;김희제
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.1945-1947
    • /
    • 2004
  • "CRT" which had dominated the market of display until 2000 is not appropriate for information indicating media due to several limitations. Thus, TFT-LCD, PDP, OLED, etc are growing in display industry instead of CRT because they meet demands of information indicating media. OLED display which responses within 1ms fits any picture manifestation medias because it uses self radiance OLED for picture clement that has no obstacles in showing the angle of vision. OLED's characteristic of action is very sensitive to thickness of electrode so that this has been an important issue. This study tried to find the most suitable thickness of electrode using ITO, Mo, and AL. Using the results of IVL measurements, analyzed equality of electrode board. As a result, found the thickness of electrode that has high electrical efficiency and optimized it.

  • PDF

대지구조 모델에 따른 봉형 접지전극의 접지저항값 변화 (The Variations of Grounding Resistance of the Vertical Electrodes by Soil Models)

  • 심건보;김원배;서길모;조금배
    • 조명전기설비학회논문지
    • /
    • 제26권9호
    • /
    • pp.57-63
    • /
    • 2012
  • The basic purpose of grounding is for human safety and normal operation of system related to electrical shock hazard by faults of electrical equipments. A grounding electrode is defined as a conducting element that connects electrical systems and/or equipment to the earth. The lowest possible resistance connection to the earth is sought from the grounding electrode. The grounding electrode is the foundation of the electrical safety system. The resistance to ground of vertical electrodes buried in the two deference soil structures has been analyzed for a length of electrodes and soil parameters. The equation of ground resistance of vertical electrodes are Tagg's equation for uniform soil models, and modified equation of Dwight equation for two-layer soil model. In this paper, compared with results of two equations are calculated values of vertical electrode in uniform and two-layer soil models.

저온소결을 통한 초고용량 MLCC 개발 (Development of Ultra-high Capacitance MLCC through Low Temperature Sintering)

  • 손성범;김효섭;송순모;김영태;허강헌
    • 한국세라믹학회지
    • /
    • 제46권2호
    • /
    • pp.146-154
    • /
    • 2009
  • It is necessary to minimize the thickness of Ni inner electrode layer and to improve the coverage of inner electrode, for the purpose of developing the ultra high-capacity multi layered ceramic capacitor (MLCC). Thus, low temperature sintering of dielectric $BaTiO_3$ ceramic should be precedently investigated. In this work, the relationship between dielectric properties of MLCC and batch condition such as mixing and milling methods was investigated in the $BaTiO_3$(BT)-Dy-Mg-Ba system with borosilicate glass as a sintering agent. In addition, several chip properties of MLCC manufactured by low temperature sintering were compared with conventionally manufactured MLCC. It was found that low temperature sintered MLCC showed better DC-bias property and lower aging rate. It was also confirmed that the thickness of Ni inner electrode layer became thinner and the coverage of inner electrode was improved through low temperature sintering.

Electrical resistivity tomography survey for prediction of anomaly in mechanized tunneling

  • Lee, Kang-Hyun;Park, Jin-Ho;Park, Jeongjun;Lee, In-Mo;Lee, Seok-Won
    • Geomechanics and Engineering
    • /
    • 제19권1호
    • /
    • pp.93-104
    • /
    • 2019
  • Anomalies and/or fractured grounds not detected by the surface geophysical and geological survey performed during design stage may cause significant problems during tunnel excavation. Many studies on prediction methods of the ground condition ahead of the tunnel face have been conducted and applied in tunneling construction sites, such as tunnel seismic profiling and probe drilling. However, most such applications have focused on the drill and blast tunneling method. Few studies have been conducted for mechanized tunneling because of the limitation in the available space to perform prediction tests. This study aims to predict the ground condition ahead of the tunnel face in TBM tunneling by using an electrical resistivity tomography survey. It compared the characteristics of each electrode array and performed an investigation on in-situ tunnel boring machine TBM construction site environments. Numerical simulations for each electrode array were performed, to determine the proper electrode array to predict anomalies ahead of the tunnel face. The results showed that the modified dipole-dipole array is, compared to other arrays, the best for predicting the location and condition of an anomaly. As the borehole becomes longer, the measured data increase accordingly. Therefore, longer boreholes allow a more accurate prediction of the location and status of anomalies and complex grounds.

Electrochemical Multi-Coloration of Molybdenum Oxide Bronzes

  • Lee, Sang-Min;Saji, Viswanathan S.;Lee, Chi-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2348-2352
    • /
    • 2013
  • We report a simple electrochemical approach in fabricating multiple colored molybdenum (Mo) oxide bronzes on the surface of a Mo-quartz electrode. A three step electrochemical batch process consisting of linear sweep voltammetry and anodic oxidation followed by cathodic reduction in neutral $K_2SO_4$ electrolyte at different end potentials, viz. -0.62, -0.80 and -1.60 V (vs. $Hg/HgSO_4$) yielded red, blue and yellow colored bronzes. The samples produced were analyzed by XRD, EDS, and SIMS. The color variation was suggested to be associated with the cations intercalation into the oxide formed and the simultaneous structural changes that occurred during the cathodic reduction in neutral aqueous medium.

Morphological Structural and Electrical Properties of DC Magnetron Sputtered Mo Thin Films for Solar Cell Application

  • Fan, Rong;Jung, Sung-Hee;Chung, Chee-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.389-389
    • /
    • 2012
  • Molybdenum is one of the most important materials used as a back ohmic contact for $Cu(In,Ga)(Se,S)_2$ (CIGS) solar cells because it has good electrical properties as an inert and mechanically durable substrate during the absorber film growth. Sputter deposition is the common deposition process for Mo thin films. Molybdenum thin films were deposited on soda lime glass (SLG) substrates using direct-current planar magnetron sputtering technique. The outdiffusion of Na from the SLG through the Mo film to the CIGS based solar cell, also plays an important role in enhancing the device electrical properties and its performance. The structure, surface morphology and electrical characteristics of Mo thin films are generally dependent on deposition parameters such as DC power, pressure, distance between target and substrate, and deposition temperature. The aim of the present study is to show the resistivity of Mo layers, their crystallinity and morphologies, which are influenced by the substrate temperature. The thickness of Mo films is measured by Tencor-P1 profiler. The crystal structures are analyzed using X-ray diffraction (XRD: X'Pert MPD PRO / Philips). The resistivity of Mo thin films was measured by Hall effect measurement system (HMS-3000/0.55T). The surface morphology and grain shape of the films were examined by field emission scanning electron microscopy (FESEM: Hitachi S-4300). The chemical composition of the films was obtained by the energy dispersive X-ray spectroscopy (EDX). Finally the optimum substrate temperature as well as deposition conditions for Mo thin films will be developed.

  • PDF