• Title/Summary/Keyword: Mo 및 Zr 첨가제

Search Result 4, Processing Time 0.018 seconds

Hydrogen Storage and Release by Redox Reaction of Fe/Zr/Mo Mixed Oxide Mediums (Fe/Zr/Mo 혼합 산화물 매체의 Redox 반응을 이용한 수소 저장 및 방출)

  • Je, Han-Sol;Kang, Eun-Jee;Lee, Su-Gyung;Park, Chu-Sik;Kim, Young-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.616-624
    • /
    • 2011
  • Hydrogen storage and release of Fe/Zr/Mo mixed oxide mediums were investigated by hydrogen reduction and water splitting oxidation($Fe_3O_4+4H_2{\rightleftharpoons}3Fe+4H_2O$). As the results of TPR/O, Mo was an additive to enhance the reactivity of water splitting oxidation as well as the stability of the medium. On the other hand, it seemed that $ZrO_2$ additive provided the passway for the diffusion of gaseous chemicals on the medium in repeated redox cycles. Among the Fe/Zr/Mo mediums, a FeZrMo-7 medium (Fe/Zr/Mo=80/13/7mol%) exhibited the best performance with good durability during five repeated redox cycles. The amount of hydrogen evolved on the medium was maintained at ca. 10.7mmol-$H_2$/g-medium corresponding to the hydrogen storage amount of ca. 2.2wt%.

Effect of MoS$_2$ and $Fe_2O_3$ Additives on the Tribological Behavior of the Plasma Sprayed Zirconia Based Coatings (MoS$_2$$Fe_2O_3$ 첨가제가 지르코니아계 용사코팅층의 마모마찰 특성에 미치는 영향)

  • 신종한;임대순;안효석
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.93-99
    • /
    • 1997
  • High Temperature wear behavior of plasma sprayed ZrO$_2$ and MoS$_2$, $Fe_2O_3$ coatings were investigated for high temperature wear resistance applications. The MoS$_2$, $Fe_2O_3$ added powders containing 2.5, 5.0, 7.5, 10.0 mol% of $MoS_2$, $Fe_2O_3$ for plasma spray were made by spray drying method. Wear test were performed at temperature ranges from room temperature to 600$\circ$C. The microstructural change of coatings and the worn. surface were examined by SEM and XRD. In ZrO$_2$ coating, the coefficient of friction and wear amount of room temperature to 400$\circ$C was increased with temperature and decreased with temperature over 400$\circ$C. The coefficient of friction and wear amount of MoS$_2$ added coatings were increased with temperature, but those of $Fe_2O_3$ added coatings had lower coefficient of friction and higher wear resistance than ZrO$_2$ coating.

  • PDF

Fabrication and characteristics of porous ceramics from $ZrTiO_4$ based ceramic material (다공성 $ZrTiO_4$ 재료의 제조 및 특성)

  • Hur, Geun;Myoung, Seong-Jae;Lee, Yong-Hyun;Chun, Myoung-Pyo;Cho, Jeong-Ho;Kim, Byung-Ik;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.5-9
    • /
    • 2008
  • Cordierite has a very low thermal expansion coefficient, but has problem that it has a weak mechanical strength and is apt to be attacked by acid such as sulfur for using as a diesel particulate filter support. The physical properties of $ZrTiO_4$ modified with $SiO_2,\;Al_2O_3$, MoOx, $Cr_2O_3\;and\;Nb_2O_5$ were investigated with XRD, SEM, UTM and thermal expansion, etc. in this paper. $ZrTiO_4$ powder was synthesized as a monoclinic structure with processes that starting materials of $TiO_2\;and\;ZrO_2$ were mixed with ball mill and calcined above $1240^{\circ}C$ for 3 hr. Additive modified $ZrTiO_4$ specimens for flexural strength and thermal expansion measurement were obtained by mixing $ZrTiO_4$ powder with additives, pressing and firing at $1300^{\circ}C$ for 3 hr. The porosity of additive modified $ZrTiO_4$ decreased monotonically with increasing additive content by 5 wt% regardless of additive types and saturated for further increase of additive by 10wt. The flexural strength of $Al_2O_3$ (5, 10 wt%) modified $ZrTiO_4$ shows a large increase, but that of other additives modified $ZrTiO_4$ decreased. The thermal expansion coefficient of additive modified $ZrTiO_4$ except $Nb_2O_5$ decreased continuously with the content of additive. In particular, the lowest thermal expansion coefficient of $ZrTiO_4$ was obtained for the additive of $SiO_2$.

Experimental Study of Hydrogen and Syngas Production over Ni/Ce-ZrO2/Al2O3 Catalysts with Additives (Ni/Ce-ZrO2/Al2O3 촉매의 첨가제에 따른 수소 및 합성가스 생성에 대한 실험적 연구)

  • Cho, Wonjun;Yu, Hyejin;Mo, Yonggi;Ahn, Whaseung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.105-113
    • /
    • 2014
  • Performance tests on $Ni/Ce-ZrO_2/Al_2O_3$ catalysts with additives (MgO, $La_2O_3$) were investigated in the combined reforming processes (SCR, ATR, TRM) in order to produce hydrogen and carbon monoxide (it is called "syngas".). The catalyst characterization was conducted using the BET surface analyzer, X-ray diffraction (XRD), SEM, TPR and TGA. The combined reforming process was developed to adjust the syngas ratio depending on the synthetic fuel (methanol, DME and GTL) manufacturing processes. Ni-based catalysts supported on alumina has been generally recommended as a combined reforming reaction catalyst. It was found that both free NiO and complexed NiO species were responsible for the catalytic activity in the combined reforming of methane conversion, and the $Ce-ZrO_2$ binary support employed had improved the oxygen storage capacity and thermal stability. The additives, MgO and $La_2O_3$, also seemed to play an important role to prevent the formation of the carbon deposition over the catalysts. The experimental results were compared with the equilibrium data using a commercial simulation tool (PRO/II).