• Title/Summary/Keyword: Mn-Ni-Co

Search Result 692, Processing Time 0.031 seconds

Exchange coupling field of NiFe/IrMn/CoFe trilayer depending on Mn composition (3중박막 NiFe/IrMn/CoFe에서 Mn 함유량에 의존하는 교환결합세기)

  • 김보경;이진용;함상희;김순섭;이상석;황도근;김선욱;이장로
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.130-131
    • /
    • 2003
  • The magnetic and thermal properties of NiFe/IrMn/CoFe with Mn additions have been studied. As grown CoFe pinned-layers with IrMn-Mn have dominantly larger exchange biasing field( $H_{ex}$) and blocking temperature( $T_{b}$) than when pure I $r_{22}$M $n_{78}$ is used. The magnetic properties improve, $H_{ex}$ and $T_{b}$ improve with 77-78 vol% Mn, but drop considerably with more Mn additions, losing magnetic properties of theb NiFe/IrMn/CoFe with addition 0.6 vol % Mn. The average x-ray diffraction peak ratios fcc (111)CoFe of (111)IrM $n_3$ textures for the Mn inserted total vol of 75, 77, and 79 vol% were about 1.4, 0.8, and 0.6, respectively. For the sample without Mn inserted layer, the $H_{ex}$ between I $r_{22}$M $n_{78}$ and CoFe layers is almost nothing. For two multilayer as-grown samples with ultra-thin Mn layers of 77 vol % and 79 vol %, the $H_{ex}$s are 250 Oe and 150 Oe, respectively. In case of IrMn with 77.5 vol% Mn, the $H_{ex}$ was 444 Oe up to 30$0^{\circ}C$ endured of 363 Oe at 40$0^{\circ}C$, respectively. Mn additions improve the magnetic properties and thermal stabilities of NiFe/IrMn/CoFe. Those increase the $H_{ex}$ and $T_{b}$. In applications where higher $H_{ex}$ and $T_{b}$ are accept, proper concentrations of Mn can be used.n can be used.be used.

  • PDF

The Structural and Electrochemical Properties of Li[Ni0.6-xBaxCo0.1Mn0.3]O2 (x = 0, 0.01) by Barium Doping (Barium 도핑에 따른 Li[Ni0.6-xBaxCo0.1Mn0.3]O2(x=0, 0.01) 의 구조 분석 및 전기화학적 특성)

  • Jang, Byeong-Chan;Yoo, Gi-Won;Yang, Su-Bin;Min, Song-Gi;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.4
    • /
    • pp.222-228
    • /
    • 2014
  • Ni-rich system $Li[Ni_{1-x-y}Co_xMn_y]O_2$ of lithium secondary battery cathode material keep a high discharge capacity. However, by the Ni content increases, there is a problem that the electrochemical properties and stability of the structure are reduced. In order to solve these problems, research for positive ion doping is performed. The one of the cathode material, barium-doped $Li[Ni_{0.6-x}Ba_xCo_{0.1}Mn_{0.3}]O_2$ (x=0.01), was synthesized by the precursor, $Ni_{0.6}Co_{0.1}Mn_{0.3}(OH)_2$, from the co-precipitation method. The barium doped materials have studied the structural and electrochemical properties. The analysis of structural properties, results of X-ray diffraction analysis, and those results confirmed the change of the lattice from the binding energy in the structure by barium doping. Increased stability of the layered structure was observed by $I_{(006)}+I_{(102)}/I_{(101)}$(R-factor) ratio decrease. we expected that the electrochemical characteristics are improved. 23 mAh/g discharge capacity of barium-doped $Li[Ni_{0.6-x}Ba_xCo_{0.1}Mn_{0.3}]O_2$ (x=0.01) electrode is higher than discharge capacity of $Li[Ni_{0.6}Co_{0.1}Mn_{0.3}]O_2$ due to decrease overvoltage. And, through the structural stability was confirmed that improved the cycle characteristics. We caused a reduction in charge transfer resistance between the electrolyte and the electrode was confirmed that the C-rate characteristics are improved.

Pt Thickness Dependence of Oscillatory Interlayer Exchange Coupling in [CoFe/Pt/CoFe]/IrMn Multilayers with Perpendicular Anisotropy

  • Lee, Sang-Suk;Choi, Jong-Gu;Kim, Sun-Wook;Hwang, Do-Guwn;Rhee, Jang-Roh
    • Journal of Magnetics
    • /
    • v.10 no.2
    • /
    • pp.44-47
    • /
    • 2005
  • The oscillatory interlayer exchange coupling (IEC) has been shown in pinned $[CoFe/Pt(t_{pt})/CoFe]/IrMn$ multi-layers with perpendicular anisotropy. The period of oscillation corresponds to about 2 monolayers of Pt. The oscillatory behavior of IEC depending on the nonmagnetic metallic Pt thickness is thought to be related the antiferromagnetic ordering induced by IrMn layer. Oscillatory IEC as function of insulating NiO thickness has been observed in $[Pt/CoFe]_4/NiO(t_{NiO})/[CoFe/Pt]_4$ multilayers. The effect of N (number of bilayer repeats) upon the magnetic property of [Pt/CoFe]N/IrMn is also studied.

Effects of Mn, Cr and Co on the Magnetic Properties of Fe-Ni Invar Alloys (Fe-Ni 인바합금의 자기적성질에 미치는 Mn, Cr 및 Co의 첨가효과)

  • 이종현;김희중;강일구;김학신
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.1
    • /
    • pp.7-12
    • /
    • 1993
  • The effects of Mn, Cr or Co addItion on the magnetic properties of Fe-Ni Invar alloys were investigated. The composition range of the three additives is up to 5wt%. In the temperature range of room temperature-$250^{\circ}C$, the variation of specific magnetization with the addition of Mn, Cr or Co in the Fe-Ni alloys except for 5wt% Co shows the phenomenon characteristics of the Invar effect, viz., the specific magnetization decreases very abrubtly with the temperature and the dependence of temperature on the specific magnetization is in the mixed form of $T^{3/2}$ and $T^{2}$. In the room temperature, the amount of increase in the specific magnetization, Curie temperature and coercivity is in order of Co > Cr > Mn. In the case of 5wt% Co an anomalous phenomena were observed due to the occurrance of ferromagnetic $\alpha$ phase which reduces the invar effect.

  • PDF

Electrochemical Properties of LiMn2O4-LiNi1/3Mn1/3Co1/3O2 Cathode Materials in Lithium Secondary Batteries (리튬이차전지 양극활물질용 LiMn2O4-LiNi1/3Mn1/3Co1/3O2의 전기화학적 특성)

  • Kong, Ming Zhe;Nguyen, Van Hiep;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.298-302
    • /
    • 2016
  • In this work, $LiMn_2O_4$ and $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ cathode materials are mixed by some specific ratios to enhance the practical capacity, energy density and cycle performance of battery. At present, the most used cathode material in lithium ion batteries for EVs is spinel structure-type $LiMn_2O_4$. $LiMn_2O_4$ has advantages of high average voltage, excellent safety, environmental friendliness, and low cost. However, due to the low rechargeable capacity (120 mAh/g), it can not meet the requirement of high energy density for the EVs, resulting in limiting its development. The battery of $LiMn_2O_4-LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ (50:50 wt%) mixed cathode delivers a energy density of 483.5 mWh/g at a current rate of 1.0 C. The accumulated capacity from $1^{st}$ to 150th cycles was 18.1 Ah/g when the battery is cycled at a current rate of 1.0 C in voltage range of 3.2~4.3 V.

Synthesis of Li1.6[MnM]1.6O4 (M=Cu, Ni, Co, Fe) and Their Physicochemical Properties as a New Precursor for Lithium Adsorbent (Li1.6[MnM]1.6O4(M=Cu, Ni, Co, Fe)의 합성 및 리튬 흡착제용 신규 전구체로서의 물리화학적 성질)

  • Kim, Yang-Soo;Moon, Won-Jin;Jeong, Soon-Ki;Won, Dae-Hee;Lee, Sang-Ro;Kim, Byoung-Gyu;Chung, Kang-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4660-4665
    • /
    • 2011
  • New precursors as a Li adsorbent, $Li_{1.6}(MnM)_{1.6}O_4$ (M=Cu, Ni, Co, Fe), were synthesized by hydrothermal method and their physicochemical properties were discussed. XRD and HRTEM results revealed that the original spinel structure was stabilized by cobalt-doping while Cu-, Ni- and Fe-doping led to structural changes. Such a structural stabilization by Cobalt-doping was maintained after lithium leaching by acid treatment. Li absorption efficiency from seawater was significantly enhanced by using the Cobalt-doped spinel manganese oxide, $Li_{1.6}[MnCo]_{1.6}O_4$, compared to the commercially available $Li_{1.33}Mn_{1.67}O_4$; the adsorbed amount of Li from 1g-adsorbent was 35 and 16 mg by $Li_{1.6}[MnCo]_{1.6}O_4$, and $Li_{1.33}Mn_{1.67}O_4$, respectively.

Variation of GMR Properties with Ar Pressure and Co Interlayer Thickness in Ta/NiFe/Co/Cu/Co/NiFe/FeMn Spin Valve Structures (Ta/NiFe/Co/Cu/Co/NiFe/FeMn 스핀밸브구조에서 Ar 압력과 Co 사이층 두께에 따른 GMR 특성 변화)

  • 최연봉;류상현;조순철
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.2
    • /
    • pp.98-103
    • /
    • 1999
  • We have studied changes of coercivity $(H_c)$, exchange anisotropy field $(H_{ex})$ and MR ration in glass/Ta/NiFeI/CoI(t)/Cu/CoII(3/4 t)/NiFeII/FeMn spin valve structures by changing Ar pressure and thicknesses of Co layers using DC, RF sputtering methods. We obtained minimum coercivity of 2.8 Oe at 4 mTorr of Ar pressure, exchange anisotropy field of 50.0 Oe at 6 mTorr and 5.3 % of MR ratio at 10 mTorr. Also, we obtained 3.0 Oe of coercivity at 40 $\AA$ of CoI layer, 65.9 Oe at 13 $\AA$ and 4.7 % of MR ratio at 27 $\AA$ and 34 $\AA$ by changing the thicknesses of Co layers.

  • PDF

Electrochemical Performances of the Fluorine-Substituted on the 0.3Li2MnO3·0.7LiMn0.60Ni0.25Co0.15O2 Cathode Material

  • Kim, Seon-Min;Jin, Bong-Soo;Park, Gum-Jae;Kim, Hyun-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.87-93
    • /
    • 2014
  • The fluorine-substituted $0.3Li_2MnO_3{\cdot}0.7Li[Mn_{0.60}Ni_{0.25}Co_{0.15}]O_{2-x}F_x$ cathode materials were synthesized by using the transition metal precursor, $LiOH{\cdot}H_2O$ and LiF. This was to facilitate the movement of lithium ions by forming more compact SEI layer and to reduce the dissolution of transition metals. The $0.3Li_2MnO_3{\cdot}0.7Li[Mn_{0.60}Ni_{0.25}Co_{0.15}]O_{2-x}F_x$ cathode material was sphere-shaped and each secondary particle had $10{\sim}15{\mu}m$ in size. The fluorine-substituted cathodes initially delivered low discharge capacity, but it gradually increased until 50th charge-discharge cycles. These results indicated that fluorine substitution gave positive effects on the structural stabilization and resistance reduction in materials.

Synthesis and Magnetic Properties of Zn, Co and Ni Substituted Manganese Ferrite Powders by Sol-gel Method

  • Kwon, Woo-Hyun;Kang, Jeoung-Yun;Lee, Jae-Gwang;Lee, Seung-Wha;Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.159-164
    • /
    • 2010
  • The Zn, Co and Ni substituted manganese ferrite powders, $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$, were fabricated by the solgel method, and their crystallographic and magnetic properties were studied. The Zn substituted manganese ferrite, $Zn_{0.2}Mn_{0.8}Fe_2O_4$, had a single spinel structure above $400^{\circ}C$, and the size of the particles of the ferrite powder increased when the annealing temperature was increased. Above $500^{\circ}C$, all the $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$ ferrite had a single spinel structure and the lattice constants decreased with an increasing substitution of Zn, Co, and Ni in $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$. The Mossbauer spectra of $Mn_{1-x}Zn_xFe_2O_4$ (0.0$\leq$x$\leq$0.4) could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. For x = 0.6 and 0.8 they showed two Zeeman sextets and a single quadrupole doublet, which indicated they were ferrimagnetic and paramagnetic. And for x = 1.0 spectrum showed a doublet due to a paramagnetic phase. For the Co and Ni substituted manganese ferrite powders, all the Mossbauer spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. The variation of the Mossbauer parameters are also discussed with substituted Zn, Co and Ni ions. The increment of the saturation magnetization up to x = 0.6 in $Mn_{1-x}Co_xFe_2O_4$ could be qualitatively explained using the site distribution and the spin magnetic moment of substituted ions. The saturation magnetization and coercivity of the $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$ (x = 0.4) ferrite powders were also compared with pure $MnFe_2O_4$.

Electrical Properties as the ratio of ZnO/$Mn_3$$O_4$ of NTC Thermistor with $Mn_3$$O_4$-NiO-CuO-$Co_3$$O_4$-ZnO system for Inrush Current Limited (돌입전류 제한용 $Mn_3$$O_4$-NiO-CuO-$Co_3$$O_4$-ZnO계 NTC 써미스터에서 ZnO/$Mn_3$$O_4$비에 따른 전기적 특성)

  • 윤중락;김지균;권정렬;이현용;이석원
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.472-477
    • /
    • 2000
  • Oxides of the form Mn$_{4}$/O$_{4}$-CuO-Co$_{3}$/O$_{4}$-NiO-ZnO present properties that make them useful as power NTC thermistor for current limited. Electrical properties of Mn$_{3}$/O$_{4}$-CuO-Co$_{3}$/O$_{4}$-CuO-Co$_{3}$/O$_{4}$-NiO-ZnO power NTC thermistor such as I-V characteristics tim constant activation energy and heat dissipation coefficient measured as a function of temperature and composition. In Mn$_{4}$/O$_{4}$-CuO-Co$_{3}$/O$_{4}$-NiO-ZnO system with the 5wt% addition of Co$_{3}$/O$_{4}$ it can be seen that resistivity and B-constant were increased as the ratio of ZnO/Mn$_{3}$/O$_{4}$ was increased. Heat dissipation constant, I-V characteristics and time constant showed similar behaviour compared with those of conventional thermistors. In particular resistance change ratio ($\Delta$R) the important factor for reliability varied within $\pm$5% indicating the compositions of these products could be available for power thermistor.

  • PDF