• Title/Summary/Keyword: Mmp

Search Result 1,506, Processing Time 0.024 seconds

Effects of pre-applied orthodontic force on the regeneration of periodontal tissues in tooth replantation

  • Park, Won-Young;Kim, Min Soo;Kim, Min-Seok;Oh, Min-Hee;Lee, Su-Young;Kim, Sun-Hun;Cho, Jin-Hyoung
    • The korean journal of orthodontics
    • /
    • v.49 no.5
    • /
    • pp.299-309
    • /
    • 2019
  • Objective: This study aimed to investigate the effect of pre-applied orthodontic force on the regeneration of periodontal ligament (PDL) tissues and the underlying mechanisms in tooth replantation. Methods: Orthodontic force (50 cN) was applied to the left maxillary first molars of 7-week-old male Sprague-Dawley rats (n = 32); the right maxillary first molars were left untreated to serve as the control group. After 7 days, the first molars on both sides were fully luxated and were immediately replanted in their original sockets. To verify the effects of the pre-applied orthodontic force, we assessed gene expression by using microarray analysis and real-time reverse transcription polymerase chain reaction (RT-PCR), cell proliferation by using proliferating cell nuclear antigen (PCNA) immunofluorescence staining, and morphological changes by using histological analysis. Results: Application of orthodontic force for 7 days led to the proliferation of PDL tissues, as verified on microarray analysis and PCNA staining. Histological analysis after replantation revealed less root resorption, a better arrangement of PDL fibers, and earlier regeneration of periodontal tissues in the experimental group than in the control group. For the key genes involved in periodontal tissue remodeling, including CXCL2, CCL4, CCL7, MMP3, PCNA, OPG, and RUNX2, quantitative RT-PCR confirmed that messenger RNA levels were higher at 1 or 2 weeks in the experimental group. Conclusions: These results suggest that the application of orthodontic force prior to tooth replantation enhanced the proliferation and activities of PDL cells and may lead to higher success rates with fewer complications.

The Effects of Alpiniae Oxyphyllae Fructus on Osteoporosis and Muscle Dystrophy of Male Mice (수컷 생쥐의 골다공증과 근위축에 대한 익지인(益智仁)의 효과)

  • Kim, Hyeong-jun;Ahn, Sang-hyun;Park, Sun-young
    • The Journal of Internal Korean Medicine
    • /
    • v.40 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • Objective: To investigate the effect of Alpiniae oxyphyllae fructus (AOF) on the alleviation of musculoskeletal disorders caused by aging, we conducted experiments on osteoporosis and muscle atrophy. Methods: The experimental group was classified into a control group, aging-elicited (AE) group and AOF group. The control group comprised 8-week-old Institute of Cancer Research (ICR) mice. The AE and AOF groups were ICR mice at 50 weeks of age. For the AE group, 10 mL of distilled water was administered once a day for 180 days without any treatment. An AOF extract (0.54 g/kg) was dissolved in distilled water and administered to the mice in the AOF group once a day for 180 days. Results: In the experiment on the alleviation of osteoporosis, the distribution of glucosaminoglycan in the bone matrix of the femoral bone was increased in the AOF group; moreover, the osteocalcin (OCN) positive reaction was increased and 8-OHdG positivity was decreased. In addition, AOF positively decreased RANKL, positively increased OPG, and positively decreased MMP-3. Muscle fiber loss in the endomysium following muscle degeneration of the quadriceps was reduced more in the AOF group compared with the AE group, and caspase-3 positive responses were also decreased. In addition, the 8-OHdG and p-lkB positivity in the AOF group decreased compared with the AE group, and the Myo-D positivity increased. Conclusion: We found that increasing bone formation alleviates osteoporosis, and that reducing bone loss alleviates muscle atrophy by reducing muscle loss and increasing muscle development.

NOD2 signaling pathway is involved in fibronectin fragment-induced pro-catabolic factor expressions in human articular chondrocytes

  • Hwang, Hyun Sook;Lee, Mi Hyun;Choi, Min Ha;Kim, Hyun Ah
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.373-378
    • /
    • 2019
  • The nucleotide-binding and oligomerization domain (NOD) is an innate pattern recognition receptor that recognizes pathogen- and damage-associated molecular patterns. The 29-kDa amino-terminal fibronectin fragment (29-kDa FN-f) is a matrix degradation product found in the synovial fluids of patients with osteoarthritis (OA). We investigated whether NOD2 was involved in 29-kDa FN-f-induced pro-catabolic gene expression in human chondrocytes. The expression of mRNA and protein was measured using quantitative real-time polymerase chain reaction (qrt-PCR) and Western blot analysis. Small interfering RNAs were used for knockdown of NOD2 and toll-like receptor 2 (TLR-2). An immunoprecipitation assay was performed to examine protein interactions. The NOD2 levels in human OA cartilage were much higher than in normal cartilage. NOD1 and NOD2 expression, as well as pro-inflammatory cytokines, including interleukin-1beta (IL-$1{\beta}$) and tumor necrosis factor-alpha (TNF-${\alpha}$), were upregulated by 29-kDa FN-f in human chondrocytes. NOD2 silencing showed that NOD2 was involved in the 29-kDa FN-f-induced expression of TLR-2. Expressions of IL-6, IL-8, matrix metalloproteinase (MMP)-1, -3, and -13 were also suppressed by TLR-2 knockdown. Furthermore, NOD2 and TLR-2 knockdown data demonstrated that both NOD2 and TLR-2 modulated the expressions of their adaptors, receptorinteracting protein 2 (RIP2) and myeloid differentiation 88, in 29-kDa FN-f-treated chondrocytes. 29-kDa FN-f enhanced the interaction of NOD2, RIP2 and transforming growth factor beta-activated kinase 1 (TAK1), an indispensable signaling intermediate in the TLR-2 signaling pathway, and activated nuclear factor-${\kappa}B$ (NF-${\kappa}B$), subsequently leading to increased expressions of pro-inflammatory cytokines and cartilage-degrading enzymes. These results demonstrate that 29-kDa FN-f modulated pro-catabolic responses via cross-regulation of NOD2 and TLR-2 signaling pathways.

HemoHIM, A herbal preparation, alleviates airway inflammation caused by cigarette smoke and lipopolysaccharide

  • Shin, Na-Rae;Kim, Sung-Ho;Ko, Je-Won;Park, Sung-Hyeuk;Lee, In-Chul;Ryu, Jung-Min;Kim, Jong-Choon;Shin, In-Sik
    • Laboraroty Animal Research
    • /
    • v.33 no.1
    • /
    • pp.40-47
    • /
    • 2017
  • HemoHIM, herbal preparation has designed for immune system recovery. We investigated the anti-inflammatory effect of HemoHIM on cigarette smoke (CS) and lipopolysaccharide (LPS) induced chronic obstructive pulmonary disease (COPD) mouse model. To induce COPD, C57BL/6 mice were exposed to CS for 1 h per day (eight cigarettes per day) for 4 weeks and intranasally received LPS on day 26. HemoHIM was administrated to mice at a dose of 50 or 100 mg/kg 1h before CS exposure. HemoHIM reduced the inflammatory cell count and levels of tumor necrosis factor receptor (TNF)-${\alpha}$, interleukin (IL)-6 and IL-$1{\beta}$ in the broncho-alveolar lavage fluid (BALF) induced by CS+LPS exposure. HemoHIM decreased the inflammatory cell infiltration in the airway and inhibited the expression of iNOS and MMP-9 and phosphorylation of Erk in lung tissue exposed to CS+LPS. In summary, our results indicate that HemoHIM inhibited a reduction in the lung inflammatory response on CS and LPS induced lung inflammation via the Erk pathway. Therefore, we suggest that HemoHIM has the potential to treat pulmonary inflammatory disease such as COPD.

Vaccinium oldhamii Stems Inhibit Pro-inflammatory Response and Osteoclastogenesis through Inhibition of NF-κB and MAPK/ATF2 Signaling Activation in LPS-stimulated RAW264.7 Cells

  • Park, Su Bin;Kim, Ha Na;Kim, Jeong Dong;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.67-67
    • /
    • 2019
  • Vaccinium oldhamii (V. oldhamii) has been reported to exert a variety of the pharmacological properties such as anti-oxidant activity, anti-cancer activity, and inhibitory activity of ${\alpha}$-amylase and acetylcholinesterase. However, the anti-inflammatory activity of V. oldhamii has not been studied. In this study, we aimed to investigate anti-inflammatory activity of the stem extracts from V. oldhamii, and to elucidate the potential mechanisms in LPS-stimulated RAW264.7 cells. Among VOS, VOL and VOF, the inhibitory effect of NO and PGE2 production induced by LPS was highest in VOS treatment. Thus, VOS was selected for the further study. VOS dose-dependently blocked LPS-induced NO and PGE2 production by inhibiting iNOS and COX-2 expression, respectively. VOS inhibited the expression of pro-inflammatory cytokines such as $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$. In addition, VOS suppressed TRAP activity and attenuated the expression of the osteoclast-specific genes such as NFATc1, c-FOS, TRAP, MMP-9, cathepsin K, CA2, OSCAR and ATPv06d2. VOS inhibited LPS-induced $NF-{\kappa}B$ signaling activation through blocking $I{\kappa}B-{\alpha}$ degradation and p65 nuclear accumulation. VOS inhibited MAPK signaling activation by attenuating the phosphorylation of ERK1/2, p38 and JNK. Furthermore, VOS inhibited ATF2 phosphorylation and blocked ATF2 nuclear accumulation. From these findings, VOS has potential to be a candidate for the development of chemopreventive or therapeutic agents for the inflammatory diseases.

  • PDF

Oleanolic Acid Protects the Skin from Particulate Matter-Induced Aging

  • Kim, Youn Jin;Lee, Ji Eun;Jang, Hye Sung;Hong, Sung Yun;Lee, Jun Bae;Park, Seo Yeon;Hwang, Jae Sung
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.220-226
    • /
    • 2021
  • The role of particulate matter (PM) in health problems including cardiovascular diseases (CVD) and pneumonia is becoming increasingly clear. Polycyclic aromatic hydrocarbons, major components of PM, bind to aryl hydrocarbon receptor (AhRs) and promote the expression of CYP1A1 through the AhR pathway in keratinocytes. Activation of AhRs in skin cells is associated with cell differentiation in keratinocytes and inflammation, resulting in dermatological lesions. Oleanolic acid, a natural component of L. lucidum, also has anti-inflammation, anticancer, and antioxidant characteristics. Previously, we found that PM10 induced the AhR signaling pathway and autophagy process in keratinocytes. Here, we investigated the effects of oleanolic acid on PM10-induced skin aging. We observed that oleanolic acid inhibits PM10-induced CYP1A1 and decreases the increase of tumor necrosis factor-alpha and interleukin 6 induced by PM10. A supernatant derived from keratinocytes cotreated with oleanolic acid and PM10 inhibited the release of matrix metalloproteinase 1 in dermal fibroblasts. Also, the AhR-mediated autophagy disruption was recovered by oleanolic acid. Thus, oleanolic acid may be a potential treatment for addressing PM10-induced skin aging.

Glycolysis Mediated Sarcoplasmic Reticulum Ca2+ Signal Regulates Mitochondria Ca2+ during Skeletal Muscle Contraction (근수축시 해당작용에 의한 근형질 세망의 Ca2+ 변화가 미토콘드리아 Ca2+ 증가에 미치는 영향)

  • Park, Dae-Ryoung
    • Exercise Science
    • /
    • v.26 no.3
    • /
    • pp.229-237
    • /
    • 2017
  • PURPOSE: This study was to investigate the Glycolysis mediated sarcoplasmic reticulum (SR) $Ca^{2+}$ signal regulates mitochondria $Ca^{2+}$ during skeletal muscle contraction by using glycolysis inhibitor. METHODS: To examine the effect of Glycolysis inhibitor on SR and mitochondria $Ca^{2+}$ content, we used skeletal muscle fiber from gastrocnemius muscle. 2-deoxy glucose and 3-bromo pyruvate used as glycolysis inhibitor, it applied to electrically stimulated muscle contraction experiment. Intracellular $Ca^{2+}$ content, SR, mitochondria $Ca^{2+}$ level and mitochondria membrane potential (MMP) was detected by confocal microscope. Mitochondrial energy metabolism related enzyme, citric acid synthase activity also examined for mitochondrial function during the muscle contraction. RESULTS: Treatment of 2-DG and 3BP decreased the muscle contraction induced SR $Ca^{2+}$ increase however the mitochondria $Ca^{2+}$ level was increased by treatment of inhibitors and showed and overloading as compared with the control group. Glycolysis inhibitor and thapsigargin treatment showed a significant decrease in MPP of skeletal muscle cells compared to the control group. CS activity significantly decreased after pretreatment of glycolysis inhibitor during skeletal muscle contraction. These results suggest that regulation of mitochondrial $Ca^{2+}$ levels by glycolysis is an important factor in mitochondrial energy production during skeletal muscle contraction CONCLUSIONS: These results suggest that mitochondria $Ca^{2+}$ level can be regulated by SR $Ca^{2+}$ level and glycolytic regulation of intraocular $Ca^{2+}$ signal play pivotal role in regulation of mitochondria energy metabolism during the muscle contraction.

Methanolic Extract from Sea Cucumber, Holothuria scabra, Induces Apoptosis and Suppresses Metastasis of PC3 Prostate Cancer Cells Modulated by MAPK Signaling Pathway

  • Pranweerapaiboon, Kanta;Noonong, Kunwadee;Apisawetakan, Somjai;Sobhon, Prasert;Chaithirayanon, Kulathida
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.775-783
    • /
    • 2021
  • Sea cucumber, Holothuria scabra, is a well-known traditional Asian medicine that has been used for suppressing inflammation, promoting wound healing, and improving immunity. Moreover, previous studies demonstrated that the extract from H. scabra contains many bioactive compounds with potent inhibitory effect on tumor cell survival and progression. However, the effect of the methanolic extract from the body wall of H. scabra (BWMT) on human prostate cancer cells has not yet been investigated. In this study, we aimed to investigate the effects and underlying mechanism of BWMT on prostate cancer cell viability and metastasis. BWMT was obtained by maceration with methanol. The effect of BWMT on cell viability was assessed by MTT and colony formation assays. The intracellular ROS accumulation was evaluated using a DCFH-DA fluorescence probe. Hoechst 33342 staining and Annexin V-FITC/PI staining were used to examine the apoptotic-inducing effect of the extract. A transwell migration assay was performed to determine the anti-metastasis effect. BWMT significantly reduced cell viability and triggered cellular apoptosis by accumulating intracellular ROS resulting in the upregulation of JNK and p38 signaling pathways. In addition, BWMT also inhibited the invasion of PC3 cells by downregulating MMP-2/-9 expression via the ERK pathway. Consequently, our study provides BWMT from H. scabra as a putative therapeutic agent that could be applicable against prostate cancer progression.

Effects of Particulate Matter 10 Inhalation on Lung Tissue RNA expression in a Murine Model

  • Han, Heejae;Oh, Eun-Yi;Lee, Jae-Hyun;Park, Jung-Won;Park, Hye Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.84 no.1
    • /
    • pp.55-66
    • /
    • 2021
  • Background: Particulate matter 10 (PM10; airborne particles <10 ㎛) inhalation has been demonstrated to induce airway and lung diseases. In this study, we investigate the effects of PM10 inhalation on RNA expression in lung tissues using a murine model. Methods: Female BALB/c mice were affected with PM10, ovalbumin (OVA), or both OVA and PM10. PM10 was administered intranasally while OVA was both intraperitoneally injected and intranasally administered. Treatments occurred 4 times over a 2-week period. Two days after the final challenges, mice were sacrificed. Full RNA sequencing using lung homogenates was conducted. Results: While PM10 did not induce cell proliferation in bronchoalveolar fluid or lead to airway hyper-responsiveness, it did cause airway inflammation and lung fibrosis. Levels of interleukin 1β, tumor necrosis factor-α, and transforming growth factor-β in lung homogenates were significantly elevated in the PM10-treated group, compared to the control group. The PM10 group also showed increased RNA expression of Rn45a, Snord22, Atp6v0c-ps2, Snora28, Snord15b, Snora70, and Mmp12. Generally, genes associated with RNA splicing, DNA repair, the inflammatory response, the immune response, cell death, and apoptotic processes were highly expressed in the PM10-treated group. The OVA/PM10 treatment did not produce greater effects than OVA alone. However, the OVA/PM10-treated group did show increased RNA expression of Clca1, Snord22, Retnla, Prg2, Tff2, Atp6v0c-ps2, and Fcgbp when compared to the control groups. These genes are associated with RNA splicing, DNA repair, the inflammatory response, and the immune response. Conclusion: Inhalation of PM10 extensively altered RNA expression while also inducing cellular inflammation, fibrosis, and increased inflammatory cytokines in this murine mouse model.

1-Methoxylespeflorin G11 Protects HT22 Cells from Glutamate-Induced Cell Death through Inhibition of ROS Production and Apoptosis

  • Lee, Phil Jun;Pham, Chau Ha;Thuy, Nguyen Thi Thanh;Park, Hye-Jin;Lee, Sung Hoon;Yoo, Hee Min;Cho, Namki
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.217-225
    • /
    • 2021
  • This study aimed to investigate the neuroprotective effects of 1-methoxylespeflorin G11 (MLG), a pterocarpan, against glutamate-induced neurotoxicity in neuronal HT22 hippocampal cells. The protective effects of MLG were evaluated using MTT assay and microscopic analysis. The extent of apoptosis was studied using flow cytometric analysis performed on the damaged cells probed with annexin V/propidium iodide. Moreover, mitochondrial reactive oxygen species (ROS) were assessed using flow cytometry through MitoSOXTM Red staining. To determine mitochondrial membrane potential, staining with tetramethylrhodamine and JC-1 was performed followed by flow cytometry. The results demonstrated that MLG attenuates glutamate-induced apoptosis in HT22 cells by inhibiting intracellular ROS generation and mitochondrial dysfunction. Additionally, MLG prevented glutamate-induced apoptotic pathway in HT22 cells through upregulation of Bcl-2 and downregulation of cleaved PARP-1, AIF, and phosphorylated MAPK cascades. In addition, MLG treatment induced HO-1 expression in HT22 cells. These results suggested that MLG exhibits neuroprotective effects against glutamate-induced neurotoxicity in neuronal HT22 cells by inhibiting oxidative stress and apoptosis.